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Comparisons of log volume estimation techniques are performed using the equations of Smalian, Huber, and Newton,
and a numerical technigue using cubic splines. The data utilized were obtained by predicting diameters at various points
along the stem from two paper equations for white fir. Results indicate that Newton's and Huber’s equations were
the most accurate, foliowed by the cubic spline and Smalian’s equation, respectively. This technique facilitated parti-
tioning of the total error in volume estimation into measurement error and error due to model misspecification arising
when the taper of logs could not be exactly described by a simple model such as a frustum of a paraboloid. For the
taper relationships analyzed it was shown that the error due to the selection of an inappropriate mensurational model
is less than 5% for a measurement distance of 16 ft (4.9 m) for all models iested and ¢an be substantially reduced
by applying the formulae only to logs positioned above basal swell. Sysiematic measurement error was assessed analytically
and found 1o range between 1 and 4% . Thus, total error in volume estimation was less than 9% for all methods tested.

BIGING, G. §. 1988. Estimating the accuracy of volume equations using taper equations of stem profile. Can. J. For.
Res. 18 : 10021007,

Des comparaisons de diverses techniques d’estimartion du volume de billes ont été faites A partir des équations de
Smalian, de Huber et de Newton et d’une méthode numérique faisant appel a des clés cubiques. Les données ont été
obtenues par la prédiction des diamétres & divers points le long de la tige d’aprés deux équations de défilement pour
le Sapin blanc. Les résultats montrent que les équations de Newton et de Huber ont été les plus précises, suivies par
la clé cubique et "équation de Smalian, respectivement. Cette méthode a lacilité la répartition de 'erreur totale dans
I'estimation du volume en erreur due aux mesures et en erreur due aux spécifications erronées du modele découlant
du fait que le défilement des billes ne pouvait pas toujours étre décrit avec exactitude par un modéle simple comme
le tronc d’un paraboloide. A partir des relations de défilement analysées, on a démontré que Perreur due au choix
d’un modele mensurationnel inapproprié est moindre gu’environ 5% pour une distance mesurée de 4.9 m pour tous
les modéles expérimentés, et cette erreur pourrait &tre réduite de fagon marquée en n’appliquant les formules gu'aux
billes placées au-dessus du renflement du pied de arbre. Lerreur systématigue due aux mesures a ¢té évaluée de facon
analytique et on a trouvé qu’elle se tenait entre 1 et 4%. Ainsi, erreur totale dans 'estimation du volume était infé-

rieure a4 9% quelle que fut la méthode expérimentée.

Introduction

In determining volumes of logs, there are two major
sources that contribute to the total error in volume estima-
tion. First, there is the choice of the equation used in deter-
mining volume. The accuracy of a volume equation’s predic-
tion depends upon the underlying shape of the log (geometric
solid}. For example, if the shape of ihe log exactly follows
the form of a frustum of a paraboloid, then the equations
of Newton, Huber, and Smalian all provide exact results
(Husch et al. 1982).! However, as the form of the log
departs from paraboli¢, then the formulae of Huber and
Smalian become biased, and if the form radically departs
from parabolic, then Newton’s formula becomes biased
(Wensel 1977%). When this situation occurs, using these
formulae will introduce bias into volume estimation. This
component of total error is termed maodel misspecification

'Newton’s equation is given as V = (4, + 44, + A4,) L/6,
Smalian’s equation as V' = (4, + 4,) L/2. and Huber’s equation
as IV = (4;) L, where Vis cubic-foot volume, A, and A, are the
cross-sectional areas of the ends of the log (ft9), A 1s the cross-
sectional area of the log midpoint (ft?), and L = log length (ft)

*L.C. Wensel. 1977. A generalized prismoidal log volume
equation. Riometrics Note No. 5. Mimeographed publication of
the Department of Forestry and Resource Management, Univer-
sity of California, Berkeley.
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error. A second source of error is introduced when diameters
and lengths of logs are not accurately measured.

If volume is being determined via water displacement there
can be other sources of measurement error, if waier adheres
to the log, for example, or if the log is not submerged it
must be held down by mechanical arms. Both these factors
can affect displacement. As an example of measurement
error associated with water-displacement determination of
volume, Martin (1984) found that the coefficient of variation
based on repeated readings of the xylometer for logs con-
taining 5 ft* (0.14 m®) or more was under 1%, but as the
size decreased to 3-5 t? (0.08-0.14 m"), the coefficient of
variation increased to 2-3%.

Studies of the accuracy of mensurational formulae for
assessing volume have previously been conducted using two
different approaches. These approaches ¢ither compare
estimated volumes with ““‘trug’’ volumes calculated when the
measurement interval is small (approximaiely 2 ft (0.6 m)),
or compare estimated volumes with ““‘irue”” volumes deter-
mined by water displacement. In either case, true volumes
are unknown as there are measurement errors associated
with either method and errors associated with the selection
of a mensurational formula. Thus, for these studies the
results are not readily interpretable because they are con-
founded with several sources of error.

/c
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Using the water-displacement technigue, Young et al.
{1967) compared volumes of northern hardwoods and soft-
woods in Maine estimated using the formulae of Smalian
and Huber with values obtained by displacement when logs
were immersed in g xylometer. They found that for 8- and
16-ft (2.4 and 4.9-m) logs the average errors associated with
Huber’s equation (3.5% for 81 (2.4-m) logs and —3.7%
for 16-ft (4.9-m) logs) were consistently smaller and
statistically different from the average errors obtained with
Smalian’s equation { =9.0% for 8- and 16-ft (2.4 and 4.9-m)
logs). As the log length decreased 1o 4 1 (1.2 m), the errors
in volume estimation decreased, and there were no signifi-
cant differences between the volumes estimated with Huber’s
and Smalian’s equations. Mariin (1984) compared volumes
of 243 eastern hardwood logs (12.3 ft (3.7 m) in length)
estimated with 14 different eguations, including those of
Smalian, Huber, and Newton, and compared them with
values obtained by water displacement of logs. Martin found
that Huber and Newton's equations performed the best in
predicting cubic volume, followed closely by Smalian’s equa-
tion. The biases associated with Huber’s, Newton’s and
Smalian’s equations were 2.5, 3.9, and 6.9%, respectively.
The mean “‘true’’ log volume for the 243 logs was 6.1 ft?
(0.17 m?).

Another approach in evaluating volume formulae is to
compare the tree volume predictions (obtained by summing
the velumes predicted for logs) with the best available predic-
tion of tree volume. The best prediction is considered to be
the sum of the log volumes calculated when the measure-
ment iniervals are as small as possible. For example,
Goulding (1979) examined the accuracy of several standard
mensurational formulae and a spline function® in
estimating tree volumes when the interval between
measurements varied. The errors obtained as a percentage
of the volume calcuiated from using a small measurement
interval {approximately 2 ft (0.6 m}) varied by method and
distance between measurements. On the average, Goulding
found that a spline curve had an error that was 60% of the
error obtained using Smalian’s method. Newton’s equation
had an error that was, on average, 50% of the error
associated with Smalian’s method. When the distance
between measurements was less than 6.6 ft (2 m) all the
methods tested had small errors {less than 2.3%), However,
as the interval between measurements increased, the percent
error of tree volume calculaied with Smalian’s method
increased rapidly. At a distance of 16.4 ft (5 m) the percent
errors were 8% for Smalian’s equation, 5% for the spline
equation, and 4% for Newton’s equation. At a distance of
9.8 ft (3 m) the errors were less than one-half the errors
obtained at 16.4 ft (5 m).

Thus, assuming an 8- to 16-ft (2.4- to 4.9-m) log, these
research results indicate that the iotal errors encountered
in estimating volume are approximately 3-9% for Smalian’s
equation, 3-4% for Huber’s equation, 1-4% for Newton’s
equation, and 2-5% for the cubic spline equation. Because
of the rather large errors reported in studies of the accuracy
of Smalian’s equation, Husch et al. (1982) recommend that
this equation not be used unless the logs are in 4-ft {1.2-m)
lengths. However, because these results include measurement

k] T = . o . .

A spline {unction uses a set of polynomial segments with
smooth joins to create a smooth curve between specified data points
(see Liu 1980).

error, the effect due to selection of a volume formula is
overestimated.

Methods

The primary objective of this paper is to separately evaluate the
sources of error in volume estimation (model misspecification error
and measurement error) by utilizing taper eguations to represent
stem profile. With traditional mensurational rechnigues the evalua-
tion of sources of error in volume estimation cannot readily be
performed. This i1s because true volumes are never known and
estimates of “*true’” volumes are confounded with measurement
and model misspecification error, whether water-displacement
technigues or traditional mensurational formulae are used 1o
estimate log volumes.

Hence, an alternative approach, which supplements traditional
methods, is taken using statistical models of tree taper (profile)
1o provide “‘exact’ diameters at points along the tree stem. With
this technique, known volumes can be obtained by integration of
the profile equation. Because diameters are specified without error,
the confounding of sources of error can be eliminated. Hence, the
effect of model choice on the accuracy of volume estimation
(termed model misspecification error) can be examined in the
absence of measurement error. The effect of measurement error
on volume estimation can be estimated separately and these two
components ¢combined to form the total error in volume estjimation.
The results are compared with previous research findings.

This approach, however, has an inherent postulate that taper
equations accurately portray the form of logs and trees. This
premise is plausible but not entirely warranted. Relatively accurate
profile equations have been developed for many tree species. (cf.
Biging 1984; Bruce et al. 1968; Demaerschalk and Kozak 1977;
Goulding and Murray 1976; Kozak et al. 1968; Max and Burkhart
1976}, but these profile equations display some bias at various
relative heights above ground. If, however, the relationship is
sufficiently close, this approach will realistically pertray the
influence of measurement error and mode!l misspecification error
on true tree volumes.

Estimation of model misspecification error

Error in volume estimation due (0 model misspecification was
analyzed by Investigating rhe effect of vojume formula® and log
length (distance between measurements) over 25 size classes for
white fir, Abies concolor (Gord. & Glend.) Lindl. (lowiana (Gord.))
taken from Biging (1984). The 25 size classes investigated were
composed of 2 in. diameter classes from 1010 30 in, (25.4-71.1 ¢m)
and 20-f1 height classes from 50 to 130 ft. (15.2-39.6 m) primarily
falling along the main diagonal of the diameter-height stand table
taken from Biging (1984). Cubic volumes were estimated for each
tree of a given size class by summing the volume calculated for
each section® and were compared with the “actual’ cubic volumes
obtained by integrating a sigmoidal taper mode] (eg. 1) and a
segmented polynomial taper model (eg. 2). The results presented
are averaged over Lhe 25 size classes. The taper equations and
coefticients values can be found in Table 1.

Biging (1984) compared the diameter predictions of model [1]
with those of model [2] developed by Max and Burkhart (1978)
and judged by Cao et al. (1980) to outperform other models tested
in terms of bias, standard error, and mean absolute deviation.
Biging found that models [1) and [2] compared closely in perfor-
mance as judged by standard error of the estimate. The degree of

‘Note that the volume of the tip of the tree was computed
under the assumption that the tip was conical in shape,

YFor Newton's equation the log lengths were twice the length
of the logs used with the other equations. This insured that the
distance between measurements was the same for all methods used.
This is necessary because Newton's equation requires three
measurements of the diameter of each log, whereas the other
equalions require only one or two measurements.
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TasLe |. Coefficient values for taper eguations [1] and [2] for
white fir, A bies concolor (Gord. & Glend.) Lindl. (lowiana (Gord.))

The sigmoid-derived taper equation is given as

Ml d = DBH b + byn[l — ()7 (1 ~ e-b1/™)])

H
where
4 = diameter inside bark {in.) at a point /& f1 above the
ground
H = total height (f1)
DBH = diameter at breast height (in.)
Values of coefficients are as follows:
b, = 1.0933
b. = 0.3643
The segmented polynomial model is specified by
o f K
2] ¢° = pDBHY(— — 1) + BDBH (T - 1
] | '\h: ) Jlr 2 [H" ] ,
; PR P L - ! W2, . J42
+ byDBHYa, ~ ), + bDBH (e, ~ L
where :
o= zf’ﬁ'sai:i = 1,2
. h
fo=0if il

d, H, and DBH defined as in [1]

3

Values of coefficients are as follows:

b, = —2.6788
b 1.2778
By = —1.7449
by = 75.0475
a, = 0.3850
a, = 00734

bias was similar for both models, although the levels varied by
relative height and species. However, he found that both models
well represented tree form. Hence, the profiles predicted using taper
equations [1] and [2] are assumed to be sufficiently close to actual
tree profiles 1o allow an accurate partitioning of the components
of error in volume estimation into the effect of measurement error
and model misspecification error. Models [1] and [2] are both used
as a basis for generating log diameters without measurement error
1o investigale model misspecification error. A comparison of the
results from these two models will demonstrate the sensitivity of
results to the underlying taper surface generated by each model.

Estimation of measurement error

Measurement errors were assessed algebraically {see Analysis and
results) by computing the ratio of volumes predicted with the
mensurational formulae, assuming consistent measuremeni error,
10 velume computed assuming no measurement error. These two
sources of error were combined 10 form the total error in volume
estimation and compared with previous research findings.

Analysis and results

The total error in volume estimation comprises measure-
ment error and model misspecification error. These sources
will be separately analyzed and compared with the results
of previous studies.

Impact of measurement ¢rrors on the accuracy of volume
estimation
The impact of measurement error on cubic volume
estimates can be obtained algebraically by allowing
diameters and lengths of logs to vary within specified limits.
For Smalian’s equation the ratio of volume that inciudes

measurement error to volume estimated without error is
given as follows:

Sa _ KDy + D) + (D, + ADY) [L + AL)

S K(Df + DL
where
h) = Simalian’s cubic foot volume without mea-
Surement error
Sa = Smalian’s cubic foor volume with measure-
ment error
K -
(2 x4 x 144)
Al = log length measurement error
Dy, D; = the diameter measurements at the ends of the
log (in.)
After some algebraic calculation, and assuming that the
terms involving AD? ¢ = 1, 2) and AL are
negligible, then LiD? + D‘z)
S, 1 (2D1AD, + 2D,AD;)1 AL
s 707 > N

To estimate the mean effect of measurement error, a
Monte Carlo simulation approach could be emploved after
making distributional assumptions about measurement
¢rrors. However, for this siudy we need only know the
ranges in values due to measurement errors to facilitate com-
parison with previous studies. A worst-case analysis will
allow establishment of ranges within which we can expect
the effect of measurement error to be bounded. The greatest
measurement error arises when there is a consistent bias
(positive or negative) in measurement. Assuming that
AD) = AD, = AD, it follows that

Sa (2ADXD, + Dz)]l AL
nt n 5 —
S { D+ Dl | L
The relative percent change in volume estimation of logs due
[0 measurement error is given by
(3] 100 T,s_;_I ~ 100 ~ 100{9%&23 N A_L}
{s (D + D3 L
Using a similar derivation for Newton’s equation the relative
percent change in volume estimation of logs due to consis-
tent measurement error is given by

[4] 100 [‘.J\_"J] - 100 =
}P\l.'

= |

(DF + 4Di + D3 L
And for Huber's eguation the relative percent change in
volume estimation of logs due (¢ measurement error is given
as

(5] 100 [ﬂ] ~ 100 = 100{% + é&}
H D L

ro{[zwwr + 4Ds + D)) AL}

Assuming a log length of 16 ft (4.9 m), length measure-
ment error of Vo ft (0.03 m), diameter measurement error
of Vo in. (0.25 cm), and a waper of 1 in. (2.54 cm) in 8 ft
(2.4 m}, then the percent errors vary from approximaiely
4. 5% for a 6 in. (15.2 cm) diameter log to approximately
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F1G. 1. The average percent errors in cubic volume estimation
of trees as the distance between measurements vanes, basad upon
a sigmotd-derived taper equation (model 1}.

1.3% for a 30-in. (76.2-cm) log.® There is only 1.8% error
in volume for an 18 in. (45.7-cm) diameter log. [t is quite
interesting to note that the resulis of this analysis are almost
identical for all three mensurational formulae. Thus, it
appears that the effect of consisient measurement errors
affecis these equations equivalently.

The values vary little as the stated assumptions are relaxed.
That is, for log lengths of 8, 12, and 16 ft (2.4, 3.7, and
4.9 m) and for taper rates of 0.8, 1.0, and 1.2 in. (2.0, 2.5,
and 3.0 ¢m) per E ft (2.4 m), measurement errors do not
change markedly. Assuming an error of Vo in. (0.25 cm)
in diameter measurements may be conservative, and thus
more aliowance may be justiflied. Under these circumstances,
allowing the measurement error to double resulis in approx-
imately a doubling in the error in volume estimaiion, because
the approximation to error is directly proportional to the
magnitude of diameter measurement error’ (see eqs. 3, 4,
and 5). The measurement errors could be negative (under-
estimating diameter) and the effect would be to
underestimate volume. In this case, this would simply change
the sign of the values. The case of partially countervailing
errors, while not investigated, would tend to lessen the effect
of measurement error.

For this study, tree volume is estimated by summing the
volumes associated with each log (segment) of the tree. As
irees are composed of logs of varying diameters, the error
due to measurement should be weighted by the relative
volume of the tree accounted for by each log. As the values
are relatively stable over a wide selection of diameters, the
error in tree volume estimation can be approximated by
choosing a range of values that encompasses the log size
classes of interest.

Impact of model misspecification error on the gecuracy of
volume esiimaiion
Error in volume estimation due to model misspecification
was analyzed by invesiigating the effect of volume formula

"The approximating formulae presented in eqs. 3, 4, and 3
predict values within 28-100% of values calculated with the full
exXpansion.

"Errors in measuring log length exert only a minor effect on
volume estimates, For a measurement srror of 0.1 ft on a 16-{t
log, the term 100 {AL/ L) is only 0.6 and thus contributes only slight-
ly to the calculated values.

-
-
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FiG. 2. The average percent errors in cubic volume estimation
of trees as the distance between medsurements varigs, based upon
a segmenied polynomial taper equation (model 2).

and log length (distance between measurements) averaged
over the 25 size classes.?

Newton's equation

Wensel (see footnote 2) has shown that Newton’s equation
is exact when taper can be expressed as a third-order
polynomial (hereafter termed third-order polynomial form
(TOPF)), which is a function of distance from one end of
the geometric figure (log). However, when the profile of the
log cannot be expressed in TOPF, Newton’s equation does
not provide exact results. Because models [1] and [2] are
complex and cannot be expressed in TOPF, it follows that
Newton’s equaiton will not provide exact results. Figures 1
and 2 display the resulis of the average percent error in tree
volume estimation {averaged over the 23 tree size classes)
as a function of distance between measurements obtained
by applying Newton’s formula to the “‘exact’” diameter and
height values predicted with models [1] and [2]. Tt is evident
that for anv distance between points investigated (4-20 ft
(1.2-6.1 m)}, Newton’s equation is virtually unbiased for
taper equation [1]. Even at a distance of 20 ft (6.1 m}, the
bias was less than 0.5% . However, for taper equation [2],
Newton’s equation was positively biased for all measurement
intervals. At a distance of 8 ft (2.4 m), bias was under 1%,
at 16 ft (4.9 m) it was 2.5%, and at 20 fr (6.1 m} it was
3.5%,

If 1-4%y, at most, is added for measurement error then
the total error in tree volume estimation is in the range
1.5-4.5%, based on eq. | or 3.5-0.5% based on eq. 2, for
a measurement interval of 16 ft. (4.9 m). This is similar to
the results obtained by Martin (1984} and Goulding (1979).
Thus, it appears that the total error (measurement error and
model misspecification) is in the range 1.5-6.5% when
Newton’s equation is used. Considering only the error due
to model misspecification, resuits from this study confirm
that when there are departures from form for which
Newton’s equation is exact, volume estimation is biased
when standard log lengths are used. For both models tested,
there was less than 2.5% model misspecification error in
estimating tree cubic volume for a standard log length of
16 ft. (4.9 m).

*The effect of size (DBH) is not presented herein because, with
a minor exception, it had no discernible influence on model
misspecification error. The exception to this trend occurred in some
of the smaller diameter classes in the range 10-14 in. for several
of the volume formulae for which there was a small increase in
relative percent error in these classes.
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Fi1G. 3. The average percent errors in cubic volume estimation
of trees as the distance between measurements varies. Estimates
are based upon a sigmoid-derived taper equation (model 1),
beginning at breast height to exclude basal swell.

Smalian’s and Huber’s equations

For any solid it can be shown algebraically that the error
associated with Smalian’s equation is twice that of Huber's,
and of the opposite sign to that associated with Newton's
equation (Husch et al. 1982). If the gegmetric solid is an
exact frustum of a paraboloid then both formulae yield exact
results. As the log form departs from parabolic, then the
volumes predicted from both Huber and Smalian’s equa-
tions become biased. As taper departs from TOPF, then
Newton’s equation is no longer exact, but the algebraic rela-
tionship between the errors associated with Huber’s and
Smalian’s equations holds relative to Newton’s equation for
equivalent log lengths. This cannot be seen directly from
Figs. 1 and 2 because results are plotied for intervals between
measurements, not log length. However, for both taper
models tested, the error relative to Newton’s equation for
Smalian’s and Huber’s equations is given by a factor of
—2 when log lengths are equivalent.

In Figs. 1 and 2 it can be seen that the average percent
errors for these two meihods are less than 3.5% for either
taper model for distances up to 12 ft (3.7 m). As the distance
increases beyond 12 ft (3.7 m), the average percent dif-
ferences increase rapidly for Smalian’s equation, which has
an average overestimate of 2.7 and 5.1% for modeis [1] and
[2] at 16 ft (4.9 m) and 3.7 and 6.8% for models [1] and
[2] at 20 ft (6.1 m), respectively. At 20 ft (6.1 m) Huber’s
equation underestimates, on average, by less than 2% and
was approximately 1% at 16 i (4.9 m) for both models. [t
is interesting to note that because Huber’s equation is a
fupction of midlog cross-sectional area, it was the least
sensitive to changes in the underlying taper model.

If up to 1-4% is allowed for measurement error for
Smalian’s or Huber’s equation, then the total error in tree
volume estimation is approximately 4-7% for model (1] and
6-9% for model [2) for Smalian’s equation, and 2-5% for
madels (1] and [2] for Huber's equation at a measurement
distance of 16 ft (4.9 m). This differs only slightly from
Martin’s (1984) and Goulding’s (1979) results. Considering
only model misspecification error, results for both taper
models show less than 5% error in estimating tree cubic
volume with Smalian’s equation and less than 2% error with
Huber’s equation for a standard log length of 16 ft (4.9 m).

Spline functions

Spline functions have been successfully used to model
taper of individual frees {cf. Lahtinen and Laasasenaho
1979; Liu 1980; Goulding 1979) and to calculate log cubic

- Huber

- Smalian

& Newton

- Spline

Average ecror (%)

Distance between measuremenls {ft}

FiG. 4. The average percent errors in cubic volume estimation
of trees as the distance between measurements varies. Estimates
are based upon a segmented polynomial taper equation (model 2),
beginning at breast height 10 exclude basal swell,

volumes. For a mathematical formulation of cubic spline
functions see, for example, Burden et al. (1979). The spline
funciion for taper can be integrated directly to vield cubic
volume. Figures 1 and 2 display the average bias of the spline
function as distance between measurements increases for
models {1] and [2], respectively. For this study. the spline
approximation never exceeds an average of 2% for any
distance between data points for eq. 1, but for eq. 2 the
spline errors were 3.2% at 16 ft (4.9 m) and 4.4% at 20 ft
(6.1 m). Excluding the 4-ft {1.2-m} distance, the average
ratio of spline error 1o Smalian volume error was 57% for
eq. 1 and 62% for eq. 2, which is almost identical with the
results of Goulding (1979).

Assuming the same range of errors in volume estimation
as occurred for Newton’s equation (1-4%), then the total
errot in tree volume estimation is less than 3-6% for eqg. 1
and approximately 4-7% for eq. 2 at 16 ft {4.9 m), which
is in the range of errors that Goulding (1979) reported. If
only model misspecification error is considered, the bias in
tree volume estimation is less than 3.5% for both models
considered for a standard log length of 16 ft (4.9 m).

Effect of basal swell on model misspecification error

For iaper profiles developed from eas. | and 2 there are
only subtle differences in the taper profiles.” However, the
segmented polvnomial taper equation {model 2} exhibits
more basal flare than the sigmoid-derived raper equation
{(model 1) and may account for a significant proportion of
the differences in volume accuracy hetween these two
models. To test this hypothesis, models [1] and [2] were
reanalyzed using only predicted {‘‘exact’’) diameters at 4.5 {i
{1.4 m) and above to remove the effect of basal swell. The
results are presented in Figs. 3 and 4.

When Figs. 1 and 3 are compared, the reduction in model
misspecification error for the various mensurational
formulae judged against model [1], which has less basal flare
than model [2], is not pronounced. For Smalian’s equation
there was only a reduction a 1% at 16 ft (6.] m). However,
when Figs. 2 and 4 are compared for model [2], there were
dramatic reductions in model misspecification errar for all
mensurational models examined. At 16 {t. (6.1 m) the errors
were less than one-third the values displayed in Fig. 2 and
did not exceed 1.5% for any mensurational model. These

“Equation | predicts more volume in the lower portion of the
tree bole and is a more “‘regular’ profile than that predicted with

eq. 2.
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results imply that the effect of model misspecification is
greatest in the basal log in which departures from TOPF
are common and is only moderate for logs from all other
parts of the tree.

Conclusions

The total error in log (and tree) volume estimation has
two components, one due to measurement error and one
due to mode! misspecification arising when the underlying
shape of the log departs from a specified geometric shape
such as a frustum of a paraboloid. An alternative approach,
which supplements traditional techniques, was taken using
profile equations to provide ‘‘exact’ diameters at points
along the tree stem under the premise that well-constructed
taper equations are representative of tree and log profiles.
Unlike traditional techniques, this construct allows the two
sources of error to be separately assessed.

The results of this study indicate that the errors in tree
cubic volume estimation for white fir resulting from model
misspecification for the four methods rested (Smalian’s,
Newton's, and Huber’s equations and a spline function),
while substantial, are less than expected for some models
and are affected by basal swell. When measurements are
taken at a distance of 20 ft (6.1 m), all models tested had
an average error of less than approximately 7%, and less
than 5% at 16 ft (4.9 m). Below 12 ft (3.7 m) there was
minor error associated with all four methods (< 3.5%).
Newton’s and Huber’s equations fared best, but Newton’s
was biased as taper departed from third-order polynomial
form. As expected, Huber's equation outperformed
Smalian’s. The tree volume estimation errors associated with
Smalian’s equation were smaller than expected, averaging
less than 5% for a standard log length of 16 ft (4.9 m). The
cubic spline function and Huber’s equation performed very
similarly, with Huber’s equation being about 90% or less
of the value of the error associated with the cubic spline.
Huber’s equation, which is a function of midlog diameter,
was the least affected by differences in the underlying taper
surfaces tested. Thus, it appears that all of the methods
tested provide relatively accurate estimates of cubic volume
for standard log lengths.

For one taper equation, which exhibited a higher degree
of basal flare, the accuracy of the estimates of cubic volume
was notably increased for Smalian’s and Newton's equations
and for a spline equation when applied to logs above breast
height. This result showed that basal swell can have a
relatively large influence on the accuracy of the volume
estimates. Therefore, when using this technique particular
care should be taken to select a taper equation that
realistically portrays lower stem profile. It also follows that
a considered choice of a mensurational model for the basal
log is warranted to minimize model misspecification error.

It was estimated that consistent errors in measurement
(over- or under-estimation of Yo in. (0.25 cm) in diameter,
and log length estimation errors of 1o ft) resulted in 1-4%
change in volume estimation. Therefore, for this study the
total error in volume estimation ranged from approximately

2 to 9%, depending on method and distance between
measurements and the severity of measurement errors.

This technique was shown to provide results in concert
with previous research findings, and also allowed estimation
of the error associated with the choice of a mensurational
formula. This methodology is less expensive than traditional
techniques and is easily modified to allow for additional
analysis that would be difficult to achieve without conduct-
ing additional experiments, such as assessing the effect of
a different set of log lengths on the accuracy of volume
formulae.
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