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Comparisons of log volume estimation techniques are performed using the equations of Smalian, Huber, and Newton, 
and a numerical technique using cubic splines. The data utilized were obtained by predicting diameters at various points 
along the stem from two paper equations for white fir. Results indicate that Newton's and Huber's equations were 
the most accurate, followed by the cubic spline and Smalian's equation, respectively. This technique facilitated parti­
tioning of the total error in volume estimation into measurement error and error due to model misspecification arising 
when the taper of logs could not be exactly described by a simple model such as a frustum of a paraboloid. For the 
taper relationships analyzed it was shown that the error due to the selection of an inappropriate mensurational model 
is less than 5070for a measurement distance of 16 ft (4.9 m) for all models tested and can be substantially reduced 
by applying the formulae only to logs positioned above basal swell. Systematic measurement error was assessed analytically 
and found to range between 1 and 4%. Thus, total error in volume estimation was less than 9% for all methods tested. 

BIGING,G. S. 1988. Estimating the accuracy of volume equations using taper equations of stem profile. Can. J. For.
Res. 18 : 1002-1007. 

Des comparaisons de diverses techniques d'estimation du volume de billes ont ete faites 11partir des equations de 
Smalian, de Huber et de Newton et d'une methode numerique faisant appel 11des eles cubiques. Les donnees ont ete 
obtenues par 1a prediction des diametres 11divers points Ie long de la tige d'apres deux equations de defilement pour 
Ie Sapin blanc. Les resultats montrent que les equations de Newton et de Huber ont ete les plus precises, suivies par 
la ele cubique et l'equation de Smalian, respectivement. Cette methode a facilite la repartition de l'erreur totale dans 
l'estimation du volume en erreur due aux mesures et en erreur due aux specifications erronees du modele decoulant 
du fait que Ie defilement des billes ne pouvait pas toujours etre decrit avec exactitude par un modele simple comme 
Ie tronc d'un paraboloide. A partir des relations de defilement analysees, on a demontre que l'erreur due au choix 
d'un modele mensurationnel inapproprie est moindre qu'environ 5% pour une distance mesuree de 4,9 m pour tous 
les modeIes experimentes, et cette erreur pourrait etre reduite de fac;on marquee en n'appliquant les formules qu'aux 
billes placees au-dessus du renflement du pied de l'arbre. L'erreur systematique due aux mesures a ete evaluee de fac;on 
analytique et on a trouve qu'elle se tenait entre 1 et 4%. Ainsi, l'erreur totale dans l'estimation du volume etait infe­
rieure 119% quelle que fut la methode experimentee. 

[Traduit par la revue] 

Introduction 

In determining volumes of logs, there are two major error. A second source of error is introduced when diameters

sources that contribute to the total error in volume estima- and lengths of logs are not accurately measured.

tion. First, there is the choice of the equation used in deter- If volume is being determined via water displacement there

mining volume. The accuracy of a volume equation's predic- can be other sources of measurement error, if water adheres

tion depends upon the underlying shape of the log (geometric to the log, for example, or if the log is not submerged it

solid). For example, if the shape of the log exactly follows must be held down by mechanical arms. Both these factors

the form of a frustum of a paraboloid, then the equations can affect displacement. As an example of measurement

of Newton, Huber, and Smalian all provide exact results error associated with water-displacement determination of

(Husch et al. 1982).1 However, as the form of the log volume, Martin (1984) found that the coefficient of variation

departs from parabolic, then the formulae of Huber and based on repeated readings of the xylometer for logs con-

Smalian become biased, and if the form radically departs taining 5 ft3 (0.14 m3) or more was under 1070,but as the

from parabolic, then Newton's formula becomes biased size decreased to 3-5 ft3 (0.08-0.14 m3), the coefficient of

(Wensel 19772). When this situation occurs, using these variation increased to 2-3%.

formulae will introduce bias into volume estimation. This Studies of the accuracy of mensurational formulae for 
component of total error is termed model misspecification assessing volume have previously been conducted using two 

different approaches. These approaches either compare 
estimated volumes with "true" volumes calculated when the 

INewton's equation is given as V = (Aj + 4A3 + A2) L/6, 
Smalian's equation as V = (Aj + A2) L/2, and Huber's equation measurement interval is small (approximately 2 ft (0.6 m», 

or compare estimated volumes with "true" volumes deter­
as V = (A3) L, where V is cubic-foot volume, Al and A2 are the 
cross-sectional areas of the ends of the log (ft2), A3 is the cross- mined by water displacement. In either case, true volumes 
sectional area of the log midpoint (ft2), and L = log length (ft) are unknown as there are measurement errors associated 

2L.C. Wensel. 1977. A generalized prismoidal log volume with either method and errors associated with the selection 
equation. Biometrics Note No.5. Mimeographed publication of of a mensurational formula. Thus, for these studies the 
the Department of Forestry and Resource Management, Univer- results are not readily interpretable because they are con­
sity of California, Berkeley. founded with several sources of error. 
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Using the water-displacement technique, Young et al. 
(1967) compared volumes of northern hardwoods and soft­
woods in Maine estimated using the formulae of Smalian 
and Huber with values obtained by displacement when logs 
were immersed in a xylometer. They found that for 8- and 
16-ft (2.4 and 4.9-m) logs the average errors associated with 
Huber's equation (3.5070for 8-ft (2.4-m) logs and - 3.7% 
for 16-ft (4.9-m) logs) were consistently smaller and 
statistically different from the average errors obtained with 
Smalian's equation ("" 9.0% for 8- and 16-ft (2.4 and 4.9-m) 
logs). As the log length decreased to 4 ft (1.2 m), the errors 
in volume estimation decreased, and there were no signifi­
cant differences between the volumes estimated with Huber's 
and Smalian's equations. Martin (1984) compared volumes 
of 243 eastern hardwood logs (12.3 ft (3.7 m) in length) 
estimated with 14 different equations, including those of 
Smalian, Huber, and Newton, and compared them with 
values obtained by water displacement of logs. Martin found 
that Huber and Newton's equations performed the best in 
predicting cubic volume, followed closely by Smalian's equa­
tion. The biases associated with Huber's, Newton's and 
Smalian's equations were 2.5,3.9, and 6.9%, respectively. 
The mean "true" log volume for the 243 logs was 6.1 ft3 
(0.17 m3). 

Another approach in evaluating volume formulae is to 
compare the tree volume predictions (obtained by summing 
the volumes predicted for logs) with the best available predic­
tion of tree volume. The best prediction is considered to be 
the sum of the log volumes calculated when the measure­
ment intervals are as small as possible. For example, 
Goulding (1979) examined the accuracy of several standard 
mensurational formulae and a spline function3 in 
estimating tree volumes when the interval between 
measurements varied. The errors obtained as a percentage 
of the volume calculated from using a small measurement 
interval (approximately 2 ft (0.6 m)) varied by method and 
distance between measurements. On the average, Goulding 
found that a spline curve had an error that was 60% of the 
error obtained using Smalian's method. Newton's equation 
had an error that was, on average, 50% of the error 
associated with Smalian's method. When the distance 
between measurements was less than 6.6 ft (2 m) all the 
methods tested had small errors (less than 2.3%). However, 
as the interval between measurements increased, the percent 
error of tree volume calculated with Smalian's method 
increased rapidly. At a distance of 16.4 ft (5 m) the percent 
errors were 8% for Smalian's equation, 5% for the spline 
equation, and 4% for Newton's equation. At a distance of 
9.8 ft (3 m) the errors were less than one-half the errors 
obtained at 16.4 ft (5 m). 

Thus, assuming an 8- to 16-ft (2.4- to 4.9-m) log, these 
research results indicate that the total errors encountered 
in estimating volume are approximately 3-9% for Smalian's 
equation, 3-4% for Huber's equation, 1-4% for Newton's 
equation, and 2-5% for the cubic spline equation. Because 
of the rather large errors reported in studies of the accuracy 
of Smalian's equation, Husch et al. (1982) recommend that 
this equation not be used unless the logs are in 4-ft (1.2-m) 
lengths. However, because these results include measurement 

3A spline function uses a set of polynomial segments with 
smoothjoinsto createa smoothcurvebetweenspecifieddatapoints 
(see Liu 1980). 

error, the effect due to selection of a volume formula is 
overestimated. 

Methods 

The primary objective of this paper is to separately evaluate the 
sources of error in volume estimation (model misspecification error 
and measurement error) by utilizing taper equations to represent 
stem profile. With traditional mensurational techniques the evalua­
tion of sources of error in volume estimation cannot readily be 
performed. This is because true volumes are never known and 
estimates of "true" volumes are confounded with measurement 
and model misspecification error, whether water-displacement 
techniques or traditional mensurational formulae are used to 
estimate log volumes. 

Hence, an alternative approach, which supplements traditional 
methods, is taken using statistical models of tree taper (profile) 
to provide "exact" diameters at points along the tree stem. With 
this technique, known volumes can be obtained by integration of 
the profile equation. Because diameters are specified without error, 
the confounding of sources of error can be eliminated. Hence, the 
effect of model choice on the accuracy of volume estimation 
(termed model misspecification error) can be examined in the 
absence of measurement error. The effect of measurement error 
on volume estimation can be estimated separately and these two 
components combined to form the total error in volume estimation. 
The results are compared with previous research findings. 

This approach, however, has an inherent postulate that taper 
equations accurately portray the form of logs and trees. This 
premise is plausible but not entirely warranted. Relatively accurate 
profile equations have been developed for many tree species. (cf. 
Biging 1984; Bruce et a!. 1968; Demaerschalk and Kozak 1977; 
Goulding and Murray 1976;Kozak et a!. 1968; Max and Burkhart 
1976), but these profile equations display some bias at various 
relative heights above ground. If, however, the relationship is 
sufficiently close, this approach will realistically portray the 
influence of measurement error and model misspecification error 
on true tree volumes. 

Estimation of model misspecijication error 
Error in volume estimation due to model misspecification was 

analyzed by investigating the effect of volume formula4 and log 
length (distance between measurements) over 25 size classes for 
white fir, Abies concolor (Gord. & Glend.) Lind!. (Iowiana (Gord.» 
taken from Biging (1984). The 25 size classes investigated were 
composed of 2 in. diameter classes from 10 to 30 in. (25.4-71.1 cm) 
and 20-ft height classes from 50 to 130 f1. (15.2-39.6 m) primarily 
falling along the main diagonal of the diameter-height stand table 
taken from Biging (1984). Cubic volumes were estimated for each 
tree of a given size class by summing the volume calculated for 
each section5 and were compared with the "actual" cubic volumes 
obtained by integrating a sigmoidal taper model (eq. 1) and a 
segmented polynomial taper model (eq. 2). The results presented 
are averaged over the 25 size classes. The taper equations and 
coefficients values can be found in Table 1. 

Biging (1984) compared the diameter predictions of model [1] 
with those of model [2] developed by Max and Burkhart (1978) 
and judged by Cao et a!. (1980) to outperform other models tested 
in terms of bias, standard error, and mean absolute deviation. 
Biging found that models [I] and [2] compared closely in perfor­
mance as judged by standard error of the estimate. The degree of 

4Note that the volume of the tip of the tree was computed 
under the assumption that the tip was conical in shape. 

5For Newton's equation the log lengths were twice the length 
of the logs used with the other equations. This insured that the 
distance between measurements was the same for all methods used. 

This is necessary because Newton's equation requires three 
measurements of the diameter of each log, whereas the other 
equations require only one or two measurements. 
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TABLE1. Coefficient values for taper equations [1] and [2] for 
white fir, Abies conca/or (Gord. & Glend.) Lind!. (Iowiana (Gord.» 

The sigmoid-derived taper equation	 is given as 

[I]	 d = DBH {bl + b2ln[1 - C!!:..JI/3(1 - e-bj/b2)]} 
H 

where 
d = diameter inside bark (in.) at a point h ft above the 

ground 
H = total height (ft) 
DBH = diameter at breast height (in.) 

Values of coefficients are as follows: 
bj = 1.0933 
b2 = 0.3643 

The segmented polynomial model is specified by 

[2] d2 = bjDBH2(~- 1) + b2DBH2(h22 - 1)H H 
2 h2 2 h2 

+ b3DBH(aj - H) Ij + b4DBH (a2 - H) 12 

where . h . 
Ii = 11f H :::;ai: I = 1,2 
I = 0 if ~ > a 

I IH 

d, H, and DBH defined as in [1] 
Values of coefficients are as follows: 

bj = - 2.6788 
b2 = 1.2778 
b3 = - 1.7449 
b4 = 75.0475 
al = 0.5850 
a2 = 0.0734 

bias was similar for both models, although the levels varied by 
relative height and species. However, he found that both models 
well represented tree form. Hence, the profiles predicted using taper 
equations [1] and [2] are assumed to be sufficiently close to actual 
tree profiles to allow an accurate partitioning of the components 
of error in volume estimation into the effect of measurement error 
and model misspecification error. Models [1] and [2]are both used 
as a basis for generating log diameters without measurement error 
to investigate model misspecification error. A comparison of the 
results from these two models will demonstrate the sensitivity of 
results to the underlying taper surface generated by each mode!. 

Estimation of measurement error 
Measurement errors were assessed algebraically (seeAnalysis and 

results) by computing the ratio of volumes predicted with the 
mensurational formulae, assuming consistent measurement error, 
to volume computed assuming no measurement error. These two 
sources of error were combined to form the total error in volume 
estimation and compared with previous research findings. 

Analysis and results 
The total error in volume estimation comprises measure­

ment error and model misspecification error. These sources 
will be separately analyzed and compared with the results 
of previous studies. 

Impact of measurement errors on the accuracy of volume 
estimation 
The impact of measurement error on cubic volume 

estimates can be obtained algebraically by allowing 
diameters and lengths of logs to vary within specified limits. 
For Smalian's equation the ratio of volume that includes 

measurement error to volume estimated without error is 
given as follows: 

Stl = K [(D1 + ~D1)2 + (D2 + ~2)2] [L + M] 
S K(D? + IYi)L 

where 
S - Smalian's cubic foot volume without mea­

surement error 
Stl - Smalian's cubic foot volume with measure­

ment error 
7rK 

(2 X 4 X 144) 
M = log length measurement error 
D1,D2 = the diameter measurements at the ends of the 

log (in.) 
After some algebraic calculation, and assuming that the 
terms involving ~? (i = 1, 2) and M are 
negligible, then L(Df + IYi) 

Stl "" 1 + (2Dl~1 + 2~2~2) + M 
S [ (Df + D2) ] L 

To estimate the mean effect of measurement error, a 
Monte Carlo simulation approach could be employed after 
making distributional assumptions about measurement 
errors. However, for this study we need only know the 
ranges in values due to measurement errors to facilitate com­
parison with previous studies. A worst-case analysis will 
allow establishment of ranges within which we can expect 
the effect of measurement error to be bounded. The greatest 
measurement error arises when there is a consistent bias 
(positive or negative) in measurement. Assuming that 
~1 = ~2 = ~, it follows that 

[2~(Dl + D2)]
Stl "" 1 +	 + M 
S { [Df + ~] } L 

The relative percent change in volume estimation of logs due 
to measurement error is given by 

[3] 100 Stl -	 100 "" 1O0 [2~(D1 + D2)] + M 
[ S ] { [Df + ~] L } 

Using a similar derivation for Newton's equation the relative 
percent change in volume estimation of logs due to consis­
tent measurement error is given by 

[4]	 100 [~] - 100 "" 

100 [2~(D1 + 4D3 + D2)] + M 
{ [Df + 4D~ + ~] L } 

And for Huber's equation the relative percent change in 
volume estimation of logs due to measurement error is given 
as 

[5] 
100 [~] - 100 "" 100{ 2D:3 + ~} 

Assuming a log length of 16 ft (4.9 m), length measure­
ment error of 1/10ft (0.03 m), diameter measurement error 
of 1/10in. (0.25 em), and a taper of 1 in. (2.54 em) in 8 ft 
(2.4 m), then the percent errors vary from approximately 
4.50,10for a 6 in. (15.2 em) diameter log to approximately 
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FIG. 1. The averagepercent errors in cubic volumeestimation 
of trees as the distancebetweenmeasurementsvaries,basedupon 
a sigmoid-derivedtaper equation (model 1). 

1.3(1,70	 errorfor a 30-in. (76.2-cm) log.6 There is only 1.8(1,70
in volume for an 18 in. (45.7-cm) diameter log. It is quite 
interesting to note that the results of this analysis are almost 
identical for all three mensurational formulae. Thus, it 
appears that the effect of consistent measurement errors 
affects these equations equivalently. 

The values vary little as the stated assumptions are relaxed. 
That is, for log lengths of 8, 12, and 16 ft (2.4, 3.7, and 
4.9 m) and for taper rates of 0.8, 1.0, and 1.2 in. (2.0,2.5, 
and 3.0 cm) per 8 ft (2.4 m), measurement errors do not 
change markedly. Assuming an error of I/JOin. (0.25 cm) 
in diameter measurements may be conservative, and thus 
more allowance may be justified. Under these circumstances, 
allowing the measurement error to double results in approx­
imately a doubling in the error in volume estimation, because 
the approximation to error is directly proportional to the 
magnitude of diameter measurement error7 (see eqs. 3, 4, 
and 5). The measurement errors could be negative (under­
estimating diameter) and the effect would be to 
underestimate volume. In this case, this would simply change 
the sign of the values. The case of partially countervailing 
errors, while not investigated, would tend to lessen the effect 
of measurement	 error. 

For this study, tree volume is estimated by summing the 
volumes associated with each log (segment) of the tree. As 
trees are composed of logs of varying diameters, the error 
due to measurement should be weighted by the relative 
volume of the tree accounted for by each log. As the values 
are relatively stable over a wide selection of diameters, the 
error in tree volume estimation can be approximated by 
choosing a range of values that encompasses the log size 
classes of interest. 

Impact of model misspecification error on the accuracy of 
volume estimation 
Error in volume estimation due to model misspecification 

was analyzed by investigating the effect of volume formula 

6The approximating formulae presented in eqs. 3, 4, and 5 
predict values within 98-100070of values calculated with the full 
expansion. 

7Errors in measuring log length exert only a minor effect on 
volume estimates. for a measurement error of 0.1 ft on a 16-ft 
log, the term 100(M/ L) is only 0.6 and thus contributes only slight­
ly to the calculated values. 
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FIG.2. The averagepercent errors in cubic volumeestimation 
of trees as the distancebetweenmeasurementsvaries,basedupon 
a segmentedpolynomialtaper equation (model 2). 

and log length (distance between measurements) averaged 
over the 25 size classes.8 

Newton's equation 
Wensel (see footnote 2) has shown that Newton's equation 

is exact when taper can be expressed as a third-order 
polynomial (hereafter termed third-order polynomial form 
(TOPF», which is a function of distance from one end of 
the geometric figure (log). However, when the profile of the 
log cannot be expressed in TOPF, Newton's equation does 
not provide exact results. Because models [1] and [2] are 
complex and cannot be expressed in TOPF, it follows that 
Newton's equation will not provide exact results. Figures 1 
and 2 display the results of the average percent error in tree 
volume estimation (averaged over the 25 tree size classes) 
as a function of distance between measurements obtained 
by applying Newton's formula to the "exact" diameter and 
height values predicted with models [1] and [2]. It is evident 
that for any distance between points investigated (4-20 ft 
(1.2-6.1 m», Newton's equation is virtually unbiased for 
taper equation [1]. Even at a distance of 20 ft (6.1 m), the 
bias was less than 0.5(1,70.However, for taper equation [2], 
Newton's equation was positively biased for all measurement 
intervals. At a distance of 8 ft (2.4 m), bias was under 1(1,70, 
at 16 ft (4.9 m) it was 2.5%, and at 20 ft (6.1 m) it was 
3.5%. 

If 1-4(1,70,at most, is added for measurement error then 
the total error in tree volume estimation is in the range 
1.5-4.5(1,70,based on eq. lor 3.5-6.5(1,70based on eq. 2, for 
a measurement interval of 16 ft. (4.9 m). This is similar to 
the results obtained by Martin (1984) and Goulding (1979). 
Thus, it appears that the total error (measurement error and 
model misspecification) is in the range 1.5-6.5(1,70when 
Newton's equation is used. Considering only the error due 
to model misspecification, results from this study confirm 
that when there are departures from form for which 
Newton's equation is exact, volume estimation is biased 
when standard log lengths are used. For both models tested, 
there was less than 2.5(1,70model misspecification error in 
estimating tree cubic volume for a standard log length of 
16 ft. (4.9 m). 

8The effect of size (DBH) is not presented herein because, with 
a minor exception, it had no discernible influence on model 
misspecification error. The exception to this trend occurred in some 
of the smaller diameter classes in the range 10-14 in. for several 
of the volume formulae for which there was a small increase in 
relative percent error in these classes. 
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FIG. 3. The average percent errors in cubic volume estimation

of trees as the distance between measurements varies. Estimates

are based upon a sigmoid-derived taper equation (model 1),

beginning at breast height to exclude basal swell.


Smalian's and Huber's equations 
For any solid it can be shown algebraically that the error 

associated with Smalian's equation is twice that of Huber's, 
and of the opposite sign to that associated with Newton's 
equation (Husch et al. 1982). If the geQmetric solid is an 
exact frustum of a paraboloid then both formulae yield exact 
results. As the log form departs from parabolic, then the 
volumes predicted from both Huber and Smalian's equa­
tions become biased. As taper departs from TOPF, then 
Newton's equation is no longer exact, but the algebraic rela­
tionship between the errors associated with Huber's and 
Smalian's equations holds relative to Newton's equation for 
equivalent log lengths. This cannot be seen directly from 
Figs. 1and 2 because results are plotted for intervals between 
measurements, not log length. However, for both taper 
models tested, the error relative to Newton's equation for 
Smalian's and Huber's equations is given by a factor of 
- 2 when log lengths are equivalent. 

In Figs. 1 and 2 it can be seen that the average percent 
errors for these two methods are less than 3.5070for either 
taper model for distances up to 12 ft (3.7 m). As the distance 
increases beyond 12 ft (3.7 m), the average percent dif­
ferences increase rapidly for Smalian's equation, which has 
an averageoverestimateof 2.7 and 5.1070for models[1]and 
[2] at 16 ft (4.9 m) and 3.7 and 6.8070for models [1] and 
[2] at 20 ft (6.1 m), respectively. At 20 ft (6.1 m) Huber's 
equation underestimates, on average, by less than 2070and 
was approximately 1070at 16 ft (4.9 m) for both models. It 
is interesting to note that because Huber's equation is a 
function of midlog cross-sectional area, it was the least 
sensitive to changes in the underlying taper model. 

If up to 1-4070is allowed for measurement error for 
Smalian's or Huber's equation, then the total error in tree 
volume estimation is approximately 4-7070for model [1]and 
6-9070for model [2] for Smalian's equation, and 2-5070for 
models [1] and [2] for Huber's equation at a measurement 
distance of 16 ft (4.9 m). This differs only slightly from 
Martin's (1984) and Goulding's (1979) results. Considering 
only model misspecification error, results for both taper 
models show less than 5070error in estimating tree cubic 
volume with Smalian's equation and less than 2070error with 
Huber's equation for a standard log length of 16 ft (4.9 m). 

Spline functions 
Spline functions have been successfully used to model 

taper of individual trees (cL Lahtinen and Laasasenaho 
1979; Liu 1980; Goulding 1979) and to calculate log cubic 
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FIG.4. The averagepercent errors in cubic volumeestimation 
of trees as the distance betweenmeasurementsvaries. Estimates 
are basedupon a segmentedpolynomialtaper equation (model2), 
beginningat breast height to excludebasal swell. 

volumes. For a mathematical formulation of cubic spline 
functions see, for example, Burden et al. (1979). The spline 
function for taper can be integrated directly to yield cubic 
volume. Figures 1and 2 display the average bias of the spline 
function as distance between measurements increases for 
models [1] and [2], respectively. For this study, the spline 
approximation never exceeds an average of 2070for any 
distance between data points for eq. 1, but for eq. 2 the 
spline errors were 3.2070at 16 ft (4.9 m) and 4.4070at 20 ft 
(6.1 m). Excluding the 4-ft (1.2-m) distance, the average 
ratio of spline error to Smalian volume error was 57070for 
eq. 1 and 62070for eq. 2, which is almost identical with the 
results of Goulding (1979). 

Assuming the same range of errors in volume estimation 
as occurred for Newton's equation (1-4070),then the total 
error in tree volume estimation is less than 3-6070for eq. 1 
and approximately 4-7070for eq. 2 at 16 ft (4.9 m), which 
is in the range of errors that Goulding (1979) reported. If 
only model misspecification error is considered, the bias in 
tree volume estimation is less than 3.5070for both models 
considered for a standard log length of 16 ft (4.9 m). 

Effect of basal swell on model misspecification error 
For taper profiles developed from eqs. 1 and 2 there are 

only subtle differences in the taper profiles.9 However, the 
segmented polynomial taper equation (model 2) exhibits 
more basal flare than the sigmoid-derived taper equation 
(model 1) and may account for a significant proportion of 
the differences in volume accuracy between these two 
models. To test this hypothesis, models [1] and [2] were 
reanalyzed using only predicted ("exact") diameters at 4.5 ft 
(1.4 m) and above to remove the effect of basal swell. The 
results are presented in Figs. 3 and 4. 

When Figs. 1and 3 are compared, the reduction in model 
misspecification error for the various mensurational 
formulae judged against model [1], which has less basal flare 
than model [2], is not pronounced. For Smalian's equation 
there was only a reduction a 1070at 16 ft (6.1 m). However, 
when Figs. 2 and 4 are compared for model [2], there were 
dramatic reductions in model misspecification error for all 
mensurational models examined. At 16 ft. (6.1 m) the errors 
were less than one-third the values displayed in Fig. 2 and 
did not exceed 1.5070for any mensurational model. These 

9Equation 1 predicts more volume in the lower portion of the 
tree bole and is a more "regular" profile than that predicted with 
eq.2. 
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results imply that the effect of model misspecification is 
greatest in the basal log in which departures from TOPF 
are common and is only moderate for logs from all other 
parts of the tree. 

Conclusions 

The total error in log (and tree) volume estimation has 
two components, one due to measurement error and one 
due to model misspecification arising when the underlying 
shape of the log departs from a specified geometric shape 
such as a frustum of a paraboloid. An alternative approach, 
which supplements traditional techniques, was taken using 
profile equations to provide "exact" diameters at points 
along the tree stem under the premise that well-constructed 
taper equations are representative of tree and log profiles. 
Unlike traditional techniques, this construct allows the two 
sources of error to be separately assessed. 

The results of this study indicate that the errors in tree 
cubic volume estimation for white fir resulting from model 
misspecification for the four methods tested (Smalian's, 
Newton's, and Huber's equations and a spline function), 
while substantial, are less than expected for some models 
and are affected by basal swell. When measurements are 
taken at a distance of 20 ft (6.1 m), all models tested had 
an average error of less than approximately 70/0, and less 
than 5% at 16 ft (4.9 m). Below 12 ft (3.7 m) there was 
minor error associated with all four methods «3.5%). 
Newton's and Huber's equations fared best, but Newton's 
was biased as taper departed from third-order polynomial 
form. As expected, Huber's equation outperformed 
Smalian's. The tree volume estimation errors associated with 
Smalian's equation were smaller than expected, averaging 
less than 5% for a standard log length of 16 ft (4.9 m). The 
cubic spline function and Huber's equation performed very 
similarly, with Huber's equation being about 90% or less 
of the value of the error associated with the cubic spline. 
Huber's equation, which is a function of midlog diameter, 
was the least affected by differences in the underlying taper 
surfaces tested. Thus, it appears that all of the methods 
tested provide relatively accurate estimates of cubic volume 
for standard log lengths. 

For one taper equation, which exhibited a higher degree 
of basal flare, the accuracy of the estimates of cubic volume 
was notably increased for Smalian's and Newton's equations 
and for a spline equation when applied to logs above breast 
height. This result showed that basal swell can have a 
relatively large influence on the accuracy of the volume 
estimates. Therefore, when using this technique particular 
care should be taken to select a taper equation that 
realistically portrays lower stem profile. It also follows that 
a considered choice of a mensurational model for the basal 
log is warranted to minimize model misspecification error. 

It was estimated that consistent errors in measurement 
(over- or under-estimation of 1/10in. (0.25 cm) in diameter, 
and log length estimation errors of VIOft) resulted in 1-40/0 
change in volume estimation. Therefore, for this study the 
total error in volume estimation ranged from approximately 

2 to 9%, depending on method and distance between 
measurements and the severity of measurement errors. 

This technique was shown to provide results in concert 
with previous research findings, and also allowed estimation 
of the error associated with the choice of a mensurational 
formula. This methodology is less expensive than traditional 
techniques and is easily modified to allow for additional 
analysis that would be difficult to achieve without conduct­
ing additional experiments, such as assessing the effect of 
a different set of log lengths on the accuracy of volume 
formulae. 
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