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Improved Estimates of Site Index Curves 
Usinga Varying-Parameter Model 

GREG S. BIGING 

ABsrRAcr. Current methods for developing site index curves from stem analysis data or from

remeasured permanent plots commonly regress height on age (or age and site) using a nonlinear

regression model fitted to the pooled observations. While this is a computationally efficient

method, it does not satisfactorily account for between-tree differences in individual tree height

groV\,th.This paper presents a varying-parameter (linear random regression coefficient) model that

is derived by fitting height growth models to each individual tree in the data set. A weighted least

squares technique is then employed to combine these individual estimates to form a mean estimate

of the parameters of a sigmoid height growth model. These parameters are then used to predict

the height development of site trees. An example of the procedure is given using stem analysis

data from primarily dominant trees in the young-growth mixed conifer forests of California.

FORESTScI. 31:248-259.


ADDmoNALKEYWORDS. Stem analysis data. sigmoid model. height growth. 

HISTORICALLY,development of site index curves has been carried out with either 
cross-sectional data or stem analysis data (see Monserud 1984). For cross-sectional 
data, a series of heights and ages for trees comprising a select component of the 
stand (e.g., dominants or dominants and codominants) are sampled. Either a 
freehand curve is drawn through the height-over-age plot of the data (see Dunning 
1942, Dunning and Reineke 1933, Arvanitis and others 1964) or a mathematical 
model is fit to the pooled data using least squares techniques (e.g., Brickell 1968). 
This curve is termed a "guide curve." A series of proportioned curves all having 
the same shape (anamorphic) are then generated around the mean regression line 
to describe other site classes. The curves, so generated, are usually sigmoid and 
are commonly called "site curves." 

Most current research utilizes stem analysis data (e.g., Carmean 1972, Krumland 
and Wensel 1977, Barrett 1978, Monserud 1984) which provides improved es­
timates of site productivity in part because multiple observations of individual 
trees comprise a real growth series (Curtis 1964). Simple and complex forms of 
the Chapman-Richards growth model are often used to model height growth of 
site trees using pooled stem analysis data (e.g., Carmean 1971, 1972; Monserud 
and Ek 1976; and Krumland and Wensel 1977). In simplest form, the Chapman-
Richards model produces anamorphic site curves (e.g., Lundgren and Dolid 1970). 
In more complex forms, height is no longer constrained to be proportional to site 
at a given age and thus polymorphic curves can be generated. Another approach 
to generation of polymorphic site curves is given by Bailey and Clutter (1974). 
They assumed that the logarithm of height is a linear function of the inverse of 
age raised to a constant power. Then by identifying a parameter that influenced 
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curve form, and allowing it to be site-specific, they can generate polymorphic site 
curves. 

An inherent drawback in using standard modelling techniques is that the full 
information available in stem analysis data is not exploited. Usually, a model 
with a few independent variables is fitted to the pooled observations (either cross­
sectional or stem analysis data). A regression model fitted under these circum­
stances predicts the conditional mean height of the sample given specific values 
of the explanatory variables (age or age and site). However, if there is significant 
variation in individual tree growth this approach will yield results different than 
if coefficients in a growth model are allowed to vary by individual (e.g., Ferguson 
and Leech's 1978 work with yield functions). Consequently, it should not be 
assumed that the mean regression line derived from a standard approach repre­
sents the height growth development of the average tree. This paper presents an 
alternative method of analyzing site data by modelling height growth of individual 
trees. The procedure uses a varying-parameter (random regression coefficient) 
model derived from weighted least-squares fitting of height growth models to the 
observations of individual trees over time which produces a height growth curve 
for the average tree. 

DATA SOURCES 

The study was based on data from a cooperative growth and yield project entitled 
the Northern California Forest Yield Cooperative (NCFYC) in the mixed conifer 
region of California. The study combined efforts of twelve private industries and 
the University of California, Berkeley. In one aspect of this project thirty-one 
clusters containing 3 one-fifth acre (0.08 ha) plots and eight clusters containing 
two one-tenth acre (0.04 ha) plots were located in northern California for a stem 
analysis project (see Fig. 1). 

On each plot, four to six dominants (two to three for each of the two most 
prevalent species in the overstory) were chosen randomly and felled as site index 
trees for stem analysis. Section rounds (1-2 inches (2.5-5.1 cm) thick) were taken 
at stump height (1.5 feet (0.46 m», breast height and subsequent log lengths (16.5 
feet (5.03 m) or 20.5 feet (6.25 m». Additionally, three sections were cut in the 
nonmerchantable section of the tip. These sections corresponded to the three most 
recent 5-year height growth intervals. Each section was tagged and photographed. 
Laboratory analysis to determine age and annual radial growth from the photo­
graphs followed a procedure given by Biging and Wensel (1984) in which a digitizer 
was used to record the Cartesian coordinates of annual ring boundaries from the 
pith 10 the outer edge of a section. 

Site trees chosen for felling were healthy dominants receiving full light from 
above and partly from the sides. They had well-developed crowns, but they could 
be somewhat crowded on the sides. In all-aged stands, site trees needed to extend 
above the general level of their group, but not necessarily above the general level 
of the stand to be dominant. Additionally, site trees had minimal past damage 
to tops and minimal height-growth reduction due to extremes in density. Incre­
ment borings were taken to inspect the pattern of past radial growth which pro­
vided information on past stand density effects. In cases where no dominants 
could be found that displayed unsuppressed radial growth, the following types of 
trees were selected in decreasing preference: codominants showing no signs of 
suppression, dominants displaying moderate radial suppression or codominants 
that have undergone moderate radial suppression. There were 198 site trees avail­
able for analysis in the mixed conifer forest type. However, eleven trees were 
dropped from analysis because their breast height ages were less than 40 years. 
This was done to avoid long extrapolations when estimating site index at reference 
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FIGURE I. Location of stem analysis plots by township. 

age 50. This left 187 trees for analysis of which 172 were dominants and 15 were 
codominants. Of the 172 dominant trees selected, 21 displayed some past radial 
suppression and of the 15 codominant trees selected, 6 displayed some past radial 
suppression. Table 1 summarizes the site tree data. For these 187 site trees. there 
was a total of 1,551 individual measurements of diameter inside bark, age, and 
height above ground. Thus, there was an average of about 8 measurements per 
tree. I 

METHODS 

Theoretical Development. - Most site index studies have utilized either cross­
sectional or stem analysis data to predict height as a function of site and age or 
solely of age (see e.g., Bailey and Clutter 1974, Curtis and others 1974). However, 
it is unlikely that between-tree differences observed in a sample of stem analysis 
trees are adequately explained by a simple model with a few independent variables 
fitted to the pooled observations. In this study, between-tree heterogeneity is 
treated by using a varying-parameter model in which coefficients of height over 
age curves for individual trees are treated as random (see Swamy 1970). 

These two approaches can lead to different estimates of the parameters of the 
height groWth model. Consider the diagram presented in Figure 2. This figure 
depicts an idealized representation of the height groWth of individual trees over 
time. Using standard regression techniques the coefficients are considered to be 

I There were 1,855 original measurements of height above ground and age for the 187 site trees. 
However, there were 117 missing data points due mainly to film development errors. Additionally, 
187 stump cuts were not utilized leaving 1,551 data points. 
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TABLE 1. Summary statistics for the site tree data base comprised of 187 trees. 

Standard 
Variable Mean deviation Minimum Maximum 

Dbh (in) 21.5 5.4 9.4 35.5 

Ht (ft) 101.1 20.3 39.4 148.9 

Site index at age 50 (ft) 80.2 20.3 35.0 130.5 

constant between individuals. The regression line resulting from the ordinary least 
squares estimates of the parameters (OLS) predicts the conditional mean height 
of the sample given specific values of the explanatory variable (in this example 
age). However, ifthe coefficients are thought to vary by individual and a varying­
parameter model is employed then the resultant estimate of the parameters will 
produce a different regression line than that produced by OLS. 

To specify the varying-parameter (random coefficient regression) Model [1] 
consider N individual trees having T observations each. Model [1] is then given 
as follows: 

Let Yij = thefh observation of height on the l'thsite tree, and Xij = fh observation 
of age on the l'thsite tree. Then 

-
.. 

-
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FIGURE2. 
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j 
Yij = Xi3; + e;/,3 [1] 

where i = 1, . . . , Nand j = 1, . . . , T. 
Assume further that the e;/s are all independent with mean zero and variance 

ul. Thus the error is assumed to have constant variance for an individual tree, 
but may vary between trees. For Model [1], the betas (ft;)are assumed independent 
with mean fJ and variance 02. Assume fJ;= fJ + 0; where 0; is a random element 
with expectation zero, variance 02, and that it is independent of the error terms 
(eij)' Under these assumptions, we can write Model [1] as 

Yij = XijfJ + o;Xij + eij' [2] 

Let Dij = o;X;j + eij, then 

Yij = XijfJ + Dij. [3] 

Where the Var(D;) = 02X2ij + u/ and 

Cov(Dij,DilJ = Cov(o;X;j + eij,o;X;k + e;J 

= 02XuX;k 

There are {Ih[P(P+ 1)] + N + NP} parameters to estimate with NT observa­
tions.4The parameters to estimate include the variance of the e;/s (U12,. . . , UN2), 
the betas (ft1, . . . , fJN)' and the elements of the variance-covariance matrix of the 
betas (02).Under this formulation the disturbances (D;) are heteroskedastic and 
vary by tree (recall var(D;) = o2X2ij + o}). Maddala (1977) states that if we esti­
mate Model [3] by ordinary least squares (OLS) the estimate of the betas will be 
consistent, but not efficient. To obtain an efficient estimate of fJ we can employ 
generalized least squares (GLS). The GLS estimate of fJ is given by Swamy (1970): 

~= i;X;'(ulI + 02x;xn-1x; 

-1 

i:X;'(u/I + 02X;Xn-1 Y; [4]
[ ~l ] [ ~I ] 

where X/ is the vector of observations (Xii' Xi2, . . . , X;T) on the itl1tree and I is 
a (T x T) identity matrix. We can rewrite equation [4] as 

R - ~ W R - 1/[02 + u//(X;' X;)] 
,... - ~ iI-'i where W; - s [5] 

;~l ~ {1/[02 + u//(Xk' Xk)]}
k~1 

andBi is the OLS estimate of the parameter for an individual tree. The variance 
of the estimate of the betas is given as 

Var(~i) = u//X/X;. 

The estimator given in [5] is the weighted average of the betas with the weights

(W;) inversely proportional to the variance-covariance matrix of the coefficients.

In the special case where the variance of the betas (ul/ X/ Xi) is the same for all i,

then the estimate of fJwould not change with 02.That is, the estimate of fJobtained ~

with the varying-parameter (random coefficient regression) model would be iden­

tical to that obtained when the coefficients are not random.


2 The model is derived from Swamy (1970), Swamy's notation is retained with some adaptations 
from Maddala (1977). 

3 The formulation presented is for one independent variable, but can readily be expanded to higher 
dimensions. 

4 The number of parameters to be estimated for the regression model presented is P = I, but in 
general P may be any positive integer value. 
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When {)2and (]/ (i = 1, . . . , N) are unknown we need to estimate these param­
eters. Maddala (1977) suggests the following estimators: 

1 
A

(].2 =-e.'e. 
I T I I 

52 = ~ ~ ~/ - (~ ~ ~i)2. 

Height Growth Model.-Carmean (1971,1972), Monserud and Ek (1976), Krum­
land and Wensel (1977), and others have successfully applied the Chapman-
Richards function, or a modification of it, to height growth data for site trees. 
The basic form of the model is 

H = boS(l - e-b,')b2.	 [6] 

If time (t) is changed from total age to breast height age then when t = 0 (at breast 
height) height is 4.5 feet. Thus a model reflecting height growth from breast height 
1Sgiven as 

H = 4.5 + boS(l - e-b,/)b2	 [7] 

where 

H = height above ground in feet 
t = breast height age in years 

S = site index = height at breast height age of 50 years. 

Arvanitis and others (1964) indicate breast height age to be more useful than total 
age since it is easier to determine breast height age. Since early height growth is 
affected by nonsite factors such as brush competition and animal browsing, total 
age is a poorer choice for an independent variable than is breast height age (Husch 
1956). Thus breast height age was used in this study. 

If the coefficients in Model [7] are allowed to vary for each individual tree and 
site is allowed to have a power, then 

Hi = 4.5 + boi(S/3i)(1 - e-bli/)b2i i = 1, . . . , N. [8]
I 

Model [8] can then be viewed as a nonlinear counterpart to a linear random 
regression coefficient (varying-parameter) model as stated in [2]. We need not 
impose the restriction that there be an equal number of observations for each 
individual (7). However, Tj should be large enough to reliably estimate the pa­
rameters of the model and the residual variance (a}). For the data described above 
there were, on the average, eight observations per tree available for use in esti­
mation. Attempts to estimate the four parameters in Model [8] were not always 
successful owing to the frequent nonconvergence of the estimates of the asymptote 
parameter when using a nonlinear regression routine. This frequently happens 
because young trees in the sample provide too little information for estimating 
the upper asymptote. Additionally, estimating the four parameters in Model [8] 

~ leaves too few degrees of freedom for reliable estimation of (]/. Thus, an attempt 
.	 was made to linearize the estimation process to ensure estimability of the param­


eters and increase the degrees of freedom available for estimating (]? This was

accomplished by reducing the number of parameters in the model to be estimated.

Model [8] was rewritten as


Hi = 4.5 + bOiS/'(1 - e-c2/)bli	 [9] 

Hi - 4.5 
[10] 

or In[ S/' ] = In(boi) + buln(1 - e-C2/) 
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where C1and C2are constantsset before estimating the parameters bo;and bIi' The 
valuesof CIand C2were setto 0.89 and 0.024, respectively. Krumland and Wensel 
(1977) found Cl to be 0.68 for young-growth redwoods ofCalifomia. In a prelim­
inary study, Model [9] was fit to a subset ofthe data (n = 63 ponderosa pine trees) 
and the average computed C1 value was 0.89 (S.E. = 0.06) and thus was set at 
0.89. This differs from Krumland and Wensel's results in part due to species 
differences, but also because of significant differences in estimation techniques. 
In another study, Model [7] was fit to each species in the data base on an individual 
tree basis. The averagebl coefficient(C2 in Model [10]) varied from 0.028 for 
Douglas-fir to 0.020 for ponderosa pine. The average across all species was 0.024. 
Hence, C2was set to 0.024. The parameters CIand C2were set to prescribed values 
to ensure estimability of the parameters by linearization of Model [9] to the form 
of Model [10] and to allow sufficient degrees of freedom for reliable estimation 
on an individual tree basis of the residual variation. The performance of Model 
[10] (see Table 4) will be discussed in the next section. 

MODEL FITTING 

Determining Site Indexfor Individual Trees (S).-One of two methods was em­
ployed to determine individual tree height at breast height age 50 (denoted SJ 
If the tree was older than 50 years at breast height, Lagrange polynomials were 
used to assess height at age 50 (see e.g., Burden and others 1979). For trees between 
40 and 50 years in age at breast height, a variation of Model [9] was employed 
since site index is unknown for these trees and thus is not available as an inde­
pendent variable. The model used was 

H; = 4.5 + bo;(l - e-c,t)bt; [11] 

where Hi = height of the 11htree at age t, bo;and bli are regression coefficientsfor 
the l,htree, and C2is a constant equal to 0.024 (see Model [10]). This model can 
be transformed to allow linear estimation of the parameters as 

In[H; - 4.5] = In(bo;) + bliln(1 - e-c,t). [12] 

Site index is then estimated by substituting t = 50 into equation [11] and solving 
for Hi, 

Estimating bo;and bIi.-A linear regression routine was used to estimate In(bo;) 
and bl; (i = 1, . . . , N) of Model [10]. The 2 x 2 variance-covariance matrix of 
the parameters was calculated as Var(~) = &2(X'X)-I. An example is presented in 
Table 2. 

Inverting the Variance-Covariance Matrix. - Recall that 
N 

~= ~ W,~, where Wi is defined by equation [5]
;-1 

with &/ replacing u/ and 62replacing 82.This change of notation emphasizes that 
the parameters are unknown and need to be estimated from the sample data. 

Let Q = 62 + fr2/(X'X ),I , , , I 
= 82 + estimated variance-covariance of the estimated parameters of 

the l,h cross-sectional unit (tree). 

Then 

,= Q;-IW, y­

~ Qk-I
k-I 

254 / FOREST SCIENCE 

--':~~,=~~'" ,-,. . :_':-:=~:::~~~'''' 
'£r~t~~~(.':~,:

, " . 
'.:~','.:'=~~~:~~~~~~~-;~~~'~~~~}:'~~" 

.. -- , 

-,_L,~.,-- ... 

~~.;;;;:t':':'~#,~~: -', ," ,j.~ ~- ,- ' ', " '0,,­" ,~~--t~_,;-I~1~~Zf
. 

.;° '-'I: 'i~"5~';:?~:'Z:~~:'i'~'';':'tL::.-~"'" . ,.>;,', _..t";tL''{t-:~ili(~~ ~ ~~~_.~ >'-~' ""~",~~,,,,,~"~".,<;.<.. ',--" -. "',, '­. -".,~,~\!';.: '-':"!~:'-'-""""-'''--'---' ",' '--." 



'c' ",""<:g',;J~'>":C":", 

- - n_.- n --_no 

.-' . '.-' ,'_.:, -'. '':'~. .-. ,.. ::.- .::," ._, .. :'", .O..:'C,'- '", . ., -- ".. 

TABLE 2. Parameter estimates for Model [1 OJfor selected trees. 

Ouster-plot­
tree-species In(bo) b, bo 

Var(p) 

b, 

2-1-47-PP 0.875 1.940 0.002502 0.004087 bo 
.004087 .010129 b, 

2-3-25-WF 1.268 2.473 .000274 .000665 bo 
.000665 .001669 b, 

3-1-503- WF 1.005 1.586 .000221 .000260 bo 
.000260 .000385 b, 

Qi is a 2 by 2 matrix and we only need its inverse to form Wi, The algorithm for 
calculating a 2 by 2 inverse is well known. 

REsULTS 

To examine whether there was significant variation in the parameters for indi­
vidual trees and, thus, whether a varying parameter model approach is required, 
the hypothesis of equality of coefficients between trees was tested. The test statistic 
for homogeneity of coefficients (Hd) is given as (Swamy 1970) 

]V 

HIJ = ~ (bi - (3)' X/ Xi(bi - (3)
i=1 a? 

where bi are coefficients estimated by ordinary least squares (OLS) for an indi­
vidual tree and {3is the generalized least squares estimator (GLS) given in [5]. 
(Refer to footnote 4 concerning formulation of this statistic in higher dimensions.) 
The asymptotic distribution of the HiP(N - 1) statistic can be approximated by 
an F distribution having P(N - 1) and N(T - P) degrees of freedom. For this 
comparison a T value of 8 was used. The computed value of HalP(N - 1) was 
152.7. This value is considerably above the 5 percent value of F with 372 and 
1.122 degrees of freedom. Therefore, we cannot conclude that the coefficients are 
homogeneous across trees and thus, a varying parameter model approach is war­
ranted. 

The results of the GLS parameter estimation based on individual trees and the 
OLS parameters estimated from the pooled data are given in Table 3. To compare 
the results of the two estimation techniques, the hypothesis of equality of coef­
ficients between methods was tested (see Swamy 1970 for the test statistic). This 
hypothesis was rejected at a = 0.05. Thus it is evident that there are substantive 
differences in the values of the coefficients between the two estimation techniques. 
Figure 3 shows the differences in site curves (with all species combined) due to 

TABLE 3. GLS and OLS estimates of the betas. 

Item All species combined Estimation procedure 

In(po) 1.055 GLS 
fil 1.732 
In(Po) 0.954 OLS 
fi, 1.457 
N 187 

VOLUME 31, NUMBER 1, 1985/255 

!~.~f~~~(4~~ 
'-"'------

->, 
-..- -, ,,,.'-r ...' -,. -- ""---" .""t'= -- :::0-. ::"':!--,c.. ~-, 

..,:,-~j;~",:;:;,;,:;;..:'.~D,,=':'. 
:: ,:;;::-.~7;:;;~~~~"~'SJ;'-;':i~::>":~"'~:':;' ~'. '~--'::';'\:"""".."'-',~, 

: ",::-<.;' ," :,:,'~,.c''''''~:...:;~'~~.-+~,- ~,,:i' 



',,'I 

I'JO 

11:0 

./ --­
./

./
./

./
/" 

~ 

-- - - 1711 

1(,0 

].;11 

110 

no 

-

-

4/,
/., 

/.
/. 

/. 
/.' 

I 
I, 

I 
I 

I, 
/ 

/ , 
/ 

/ ,
/ 

/,
/ 

/,
/ 

/, 
/ 

/, 
/ 

/, 
/ 

-GLS 

---OLS 

120 

110 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

10 20 30 40 50 60 70 80 90 100 

BREAST HEIGHT AGE (vears) 

FIGURE3, Site index curves estimated by GLS and OLS techniques, 

the two estimation techniques.5 That is, the GLS estimate for the asymptote (bo) 
was higher than its OLS counterpart, producing higher levels of growth past age 
50. In addition, the rate and shape parameter (bl) estimated by GLS was larger 
than when estimated by OLS. The net effect of these trends is to increase the 
slope of the curves. These differences would have an effect on growth and yield 
estimation, particularly on sites of at least 80 feet at breast height age 50, in that 
the GLS-estimated curves show significantly higher potential height growth beyond 
age 50 than do their OLS counterparts. In a simulaton or inventory update, the 
height growth of trees experiencing little or moderate competition would likely 
be underestimated by the traditional OLS curves with resulting underestimates 
of volume productivity. This is because growth and yield simulators frequently 
utilize site curves in estimating height growth potential and induce reductions 
based upon the level of competition effecting individual trees (e.g., Daniels and 
others 1979, Monserud 1975, Krumland 1982, Mitchell 1975). In a related study, 
Ferguson and Leech (1978) compared OLS and GLS estimates of parameters of 

5 For the figures presented. the curves have been adjusted to go through site index at age 50. This 
adjustment was accomplished by setting t = 50 and h = S and solving for the parameter b,. However, 
the basic relationships are unchanged by this adjustment. 
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TABLE 4. Sum of squared differences between predicted and actual heights 
summed over 187 individual site trees using the GLS and OLS parameter esti­
mates of the untransformed Model [9J and the GLS estimates of Model [7J esti­
mated with nonlinear regression techniques (NLIN). 

Item GLS 

Model [9], 
linear parameter 

estimates, all 
speciescombined 

OLS 

Model [7], 
nonlinear parameter 

estimates, all 
species combined, 

GLS 

Total residual 
sum of squares 106,538 131,453 120,259 

a yield function. Although not discussed, their model predictions for cubic meter 
yields using the GLS estimates of the parameters were also higher (3-6 percent) 
than their OLS counterparts over a wide range of sites and ages. 

It is not surprising that these approaches lead to different parameter estimates 
owing to the fundamental difference in parameter estimation techniques. For these 
two approaches to lead to equivalent results, the random elements (<5;)must be 
equivalent across individuals. That is, the growth form of the individual trees 
must be equivalent. Sullivan and Reynolds (1976) have discussed the properties 
of the OLS estimators while using time series data. The OLS estimates of the 
parameters are unbiased even in the presence of correlated data. However, the 
OLS parameters are unbiased in estimating the regression line that predicts the 
conditional mean height of the sample given specific values of the explanatory 
variables. This regression line is not equal to the height growth curve of the average 
tree if the random elements vary by individual. Hence, the traditional OLS regres­
sion estimates of cross-sectional data lead to estimation of a different regression 
line. Thus a more accurate estimate of the mean height growth curve should be 
obtained with the GLS procedure presented in which a varying-parameter model 
is fitted to each individual tree in the data set. 

To assess the performance of the GLS estimates of the parameters, Model [9] 
was used to predict height over age of all 187 individual site trees.6 The sum of 
squared differences of predicted versus actual heights was calculated for each tree 
in the data base and summed using the GLS and OLS estimates of the coefficients. 
The results are presented in Table 4.7 The sum of squared differences of predicted 
versus actual heights was considerably lower when using the GLS estimates of 
the parameters of Model [9] than when using the OLS estimates. It is also inter­
esting to note that using Model [10] (or equivalently Model [9]), which was a 
linearization of the sigmoidal model, was superior in residual variation when 
judged against the GLS estimates of a nonlinear equation (Model [7]). Thus, there 
appears to have been no resultant loss in predictive power incurred by setting 
parameters to specific values to allow linearization of the sigmoid model. 8 

6The residual sum of squares using the OLS estimates of the parameters would be less than when 
using the GLS estimates for Model [10]. However, in the untransformed metric this relationship may 
not hold. 

7 For the tabled values presented, 
50 (see footnote 5). 

the curves have been constrained to go through site index at age 

8 The values presented in Table 4 for Model [7] are not directly comparable to those of Model [9] 
owing to the frequent nonconvergence of the asymptote for young trees when estimating parameters 
of Model [7]. Thus, fewer trees were utilized in estimating the coefficients of Model [7] than of Model 
[9]. 
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CONCLUSIONS 

Two methods of estimating the parameters of site index curves were investigated. 
Commonly, pooled stem analysis data are used to develop a regression equation 
describing height as a function of age and site (or age). The OLS estimates of the 
parameters, so computed, may provide different estimates of the height growth 
development of the average tree than if a varying-parameter model is employed. 
Thus, an alternative approach was presented that utilizes the full information 
inherent in stem analysis data for individual trees. The procedure used a varying­
parameter (random regression coefficient) model derived from weighted least­
squares fitting of height growth models to the observations of individual trees 
over time. . 

An example was presented for primarily dominant trees in the mixed conifer 
forest of California. For the sigmoid model tested, the varying-parameter model 
predicted higher asymptotic growth than its OLS counterpart estimated using 
pooled data. The corresponding measures of model fit for the untransformed 
Model [9] (residual sum of squared differences between predicted and actual on 
individual trees) showed that the GLS technique fitted the stem analysis data well. 
This approach should prove useful in modelling many growth processes provided 
the growth series is of sufficient length to accurately estimate the parameters of 
the hypothesized model as well as estimate residual variance on an individual 
tree basis. 
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