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Improved Estimates of Site Index Curves
Using a Varying-Parameter Model

GREG S. BIGING

ApstracT. Current methods for developing site index curves from stem analysis data or from
remeasured permanent plots commeoniy regress height on age {(or age and site) using a nonlinear
regressaaon model fitted o the pooled observauens. While this 15 a computatiooally efficien
method, it does not sausfactordy account for between-tree differences 1o individual tree heighn
growth. This paper presents a varying-parameter (linear random regression coefficient) model that
is derived by Giting height growth models to each individual tree in the data set. A weighted least
squares technique is then employed 10 combine these individual estimates o form a mean estunate
of the parameters of a sigmoid height growth model. These parameters are then used 1o predict
the height development of site trees. An example of the procedure is given using stem analysis
data from primarily dominant trees in the young-growth mixed conifer forests of California.
ForesT 501, 31:248-259.

ADDITIONAL KEY WORDS. Stem analysis dawa, sigmoid model. herght growth.

HisTORICALLY, development of site index curves has been carried out with either
cross-sectional data or stem analysis data {see Monserud 1984). For cross-sectional
data, a series of heights and ages for trees comprising a select component of the
stand (¢.g., dominants or dominants and codominants) are sampled. Either a
freehand curve 1s drawn through the height-over-age plot of the data (see Dunning
1942, Dunning and Reineke 1933, Arvamtis and others 1964) or a mathematical
model is fit to the pooled data using least squares techniques (e.g., Brickell 1968),
This curve is termed a “guide curve.” A series of proportioned curves all having
the same shape (anamorphic) are then generated arcund the mean regression line
to describe other site classes. The curves, so generated, are usually sigmoid and
are commonly called *“site curves.”

Mostcurrent research utilizes stem analysis data (e.g., Carmean 1972, Krumland
and Wensel 1977, Barrett 1978, Monserud 1984) which provides improved es-
timates of site productivity in part because muliiple observations of individual
trees comprise a real growth series (Curtis 1964). Simple and complex torms of
the Chapman-Richards growth model are often used to model height growth of
site trees using pooled stem analysis data (e.g., Carmean 1971, 1972; Monserud
and Ek 1976; and Krumtand and Wensel 1977). In simplest form, the Chapman-
Richards model produces anamorphic site curves (e.g., Lundgren and Dolid 1970).
In more complex formns, height is no longer constrained to be proportional to site
at a given age and thus polymorphic curves can be generaied. Another approach
10 generation of polymorphic siwe curves is given by Bailey and Clutter (1974).
They assumed that the logarithm of height is a linear function of the inverse of
age raised to a constant power. Then by identifying a parameter that influenced
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Califorua Forest Yield Cooperauve and MeIntire-Sienms Project 3679-MS. Manuscript reccived 3
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curve form. and allowing it to be site-specific, they can generate polymorphic site
curves.

An inherent drawback in using standard modelling techniques is that the full
information available in stem analysis data is not exploited. Usually, a model
with a few independent variables is fitted 1o the pooled observations (either cross-
secticnal or stem analysis data). A regression model fitted under these circum-
stances predicts the conditional mean height of the sample given specific values
of the explanatory variables (age or age and site). However, if there is significant
varation in individual iree growth this approach will vield results different than
if coefhicients in a growth model are allowed to vary by individual (e.g., Ferguson
and Leech’s 1978 work with vield functions). Consequently, it should not be
assumed that the mean regression line derived from a standard approach repre-
sents the height growth development of the average tree. This paper presents an
alternative method of analyzing site data by modelling height growth of individual
trees. The procedure uses a varying-parameter {random regression coefficient)
model derived from weighted least-squares fitting of height growth models to the
observations of individual trees over ume which produces a height growth curve
for the average tree.

DaTs SOURCES

The study was based on data from a cooperative growth and vield project enutled
the Northern California Forest Yield Cooperative {(NCFYC) in the mixed conifer
region of California. The study combined efforts of iwelve privaie industries and
the Umniversity of California, Berkeley. In one aspect of this project thirty-one
clusters containing 3 one-fifth acre (0.08 ha) plots and eight clusters containing
iwo one-tenth acre (0.04 ha) plots were located in northern California for a stem
analysis project (see Fig. 1).

On each plot., four to six dominanis (two to three for each of the two most
prevalent species in the overstory) were chosen randomly and felled as site index
trees for stem analysis. Section rounds (1-2 inches (2.5-5.1 cm) thick) were taken
at stump height (1.5 feet (0.46 m)), breast height and subsequent log lengths (16.5
feet (5.03 m) or 20.5 feet (6.25 m)). Additicnally, three sections were cui in the
nonmerchantable section of the tip. These sections corresponded to the three most
recent 3-year height growth intervals. Each section was tagged and photographed.
Laboratory analysis to deterrmine age and annual radial growth from the photo-
graphs followed a procedure given by Biging and Wensel (1984) in which a diginzer
was used to record the Cartesian coordinates of annual ring boundaries from the
pith to the outer edge of a section.

Site trees chosen for felling were healthy dominants recesving full light [rom
above and partly from the sides. They had well-developed crowns. but they could
be somewhat crowded on the sides. In all-aged stands, site trees needed to extend
above the general level of their group. but not necessarily above the general level
of the stand 10 be dominani. Additionally, site trees had minimal past damage
10 1ops and minimal height-growth reduction due to extremes in density. Incre-
ment borings were taken to inspect the pattern of past radial growth which pro-
vided information on past stand density effects. In cases where no dominants
could be found that displaved unsuppressed radial growth, the following types of
trees were selected in decreasing preference: codominants showing no signs of
suppression, dominants displaying moderate radial suppressiocn or codominants
that have undergone moderate radial suppression. There were 198 site trees avail-
able for analysis in the muxed conifer forest type. However. eleven trees were
dropped from analysis because their breast height ages were less than 40 years.
This was done to avoid long extrapolations when estimating site index at reference
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FIGURE |. Locauon of stem analvsis plots by wownship.
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age 30. This left 187 trees for analvsis of which 172 were domunants and 135 were
codominants. Of the 172 dominant trees selected, 21 displayed some past radial
suppression and of the 15 codominant trees selected. 6 displayed some past radial
suppression. Table 1 summarizes the site tree data. For these 187 site trees. there
was a total of 1,551 individual measurements of diameter inside bark, age, and
height above ground. Thus, there was an average of about § measurements per
tree.!

METHODS

Theoretical Development. — Most site index studies have utilized either cross-
sectional or stem analvsis data to predict height as a function of site and age or
solely of age (see ¢.g., Balley and Clutter 1974, Curtis and others 1974). However,
it is unlikeiy that between-tree differcnces observed in a sample of stem analvsis
trees are adequately explained by a simpie model with a few independent vanables
fitted to the pooled observauons. In this siudy, between-tree heterogeneity 15
wreated by using a varying-parameter model in which coeflicients of height over
age curves for individual trees are treated as random {see Swamy 1970).

These two approaches can lead io different estimates of the parameters of the
height growth model. Consider the diagram presented n Figure 2. This figure
depicis an idealized representation of the height growth of individual trees over
rime. Using standard regression techniques the coefficients are considered to be

' There were 1,835 original measurements of height above ground and age for the 187 siie trees.
However, there were 117 missing data pomnis due mauwniy to film development errors. Addwsonaliy,
187 stump cuts were not ulilized leaving 1,551 dala points.
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TABLE 1. Summary statistics for the site tree data base comprised gf 187 trees.

Standard
Vanable Mean deviation Minimum Maximum
Dbh {in} 215 5.4 9.4 355
Ht {ft) 101.1 20.3 364 148.9
Site index at age 50 (ft) 80.2 20.3 35.0 130.5

constant between individuals. The regression line resulting from the ordinary least
squares estimates of the parameters (OLS) predicts the conditional mean height
of the sample given specific values of the explanatory variable (in this example
age). However, if the coefficients are thought to vary by individual and a varying-
parameter model is employed then the resultant estimate of the parameters will
produce a different regression line than that produced by OLS.

To specify the varving-parameter (random coefficient regression} Model [1]
consider & individual trees having T observations each. Model [1] is then given
as follows:

Let ¥, = the /" observation of height on the #" site tree. and X, = j/* observation
of age on the /" site tree. Then

TH LT o

izl FUACES

cuuta

ers estimated with

yrameter model

BREAST HEIGHT aGE [vears)

Figure 2. Companson of the regression surfaces derived from a varving-parameler model and a
standard regression fit 1o pooled data.
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YJ'J' £ XU?SI + euz,l [1]

where t=1,..., Nandj=1,..., T

Assume further that the ¢,’s are all independent with mean zero and variance
a2 Thus the error is assumed 1o have constant variance for an individual wee.
but may vary between trees. For Medel [1], the betas (3,) are assumed independent
with mean 8 and variance 6*. Assume 3, = 3 + 4, where 6, is a random element
with expectation zero, variance §°, and that 1t is independent of the error terms
(e,). Under these assumptions. we can write Model [1] as

Y, = X8+ 06X, + ey [2]

Let D, =46X, + ¢, then

137

Y,= X8+ D, 3]

7
Where the Var(D,) = §2X2, + o7 and
Cov(D;, D) = Cov(l X, + 2,;,6.X, + e

= 82X, X

There are {¥%[P(P + 1)] + ¥ + NP} parameters to estimate with NT observa-
tions. The parameters to estimate include the variance of the ¢,’s (¢,%, . . ., 047),
the betas (3,, . . ., Sx), and the elements of the variance-covariance matrix of the
betas (6%). Under this formulation the disturbances (D, are hereroskedastic and
vary by tree (recall var(D,) = &X?, + ¢%). Maddala (1977) states that if we esti-
mate Model [3] bv ordinary least squares (OLS) the estimate of the betas wiil be
consistent, but not efficient. To obtain an efficient estumate of 3 we can employ
generalized least squares (GLS). The GLS estimate of 315 given by Swamy (1970):

= Z X2l + 82X X)X, | 2 Xlel + 82X XYY, (4]

=1

=1 4
where X' is the vector of observations (X,,, X, . .., X,7) on the /* tree and [ is
a {7 » T)identity matrix. We can rewrite equation [4] as

S S i /(6% + o /(X
8= 2 W3, where W, = —< ( o (X, X)) (5]

2 {1/[6* + o, 2/(X/ X))

k=1

and 3, 1s the OLS estimate of the parameter for an individual 1ree, The variance
of the esumate of the betas is given as

var(B) =6, ¥ X,X..

The esumator given n [3] is the weighted average of the betas with the weights
(') inversely proporuionai 10 the vanance-covariance matnx of the coefhcients.
In the special case where the vanance of the betas (v,2/X,'X}) is the same for all
then the estimate of 3 would not change with é°. That is, the estimate of § obtained
with the varying-parameter (random coefficient regression) model would be iden-
tical 16 that obtained when the coefficients are not random.

* The model 15 denved (rom Swamy (1970), Swamy’'s notation is retained with some adaplalions
from Maddaia (1977},

* The jormulauon presenied 1s for one independent variable. but can readily be expanded to higher
dimensions.

* The number of parameters to be estimated for the regression model presented 1s £= 1. bul in
general £ mav be any posinive mieger vajue.
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When 62 and ¢2 ({ = 1, ..., N) are unknown we need to estimate these param-
eters. Maddala (1977) suggests the following estimators:

Height Growth Model. —Carmean (1971, 1972), Monserud and Ek (1976), Krum-
land and Wensel (1977), and others have successfully applied the Chapman-
Richards functon, or a modification of it, to height growth data for site trees.
The basic form of the model is

H=5,5(1 — e~trtyon, (6]

If time (¢) is changed from total age 10 breast height age then when ¢ = 0 (at breast
height) height is 4.5 feet. Thus a model refleciing height growth from breast height
1S given as

H=454 b5(1 — e~ 0™ [N
where

H height above ground in feet
H breast height age in vears
§ = site index = height at breast height age of 50 years.

1

It

Arvanius and others (1964) indicate breast height age 1o be more useful than toial
age since 1t 15 easier to determune breast height age. Since early height growth is
affected by nonsite factors such as brush competition and animal browsing, total
age is a poorer choxce for an independent vanable than is breast height age (Husch
1956). Thus breast height age was used in this study.

If the coefficients in Model [7] are allowed 10 vary for each individual tree and
site 15 allowed 1o have a power, then

H =45+ b (SPHW] —egouypn j=1,..., N [8]

Model (8] can then be viewed as a nonlinear counierpart to a linear random
regression coefficient (varving-parameter) model as stated in [2]. We need not
1mpose the restriction that there be an equal number of observations for each
individual (7). However. T, should be large encugh to reliably estimate the pa-
rameters of the model and the residual vanance {s,%). For the data described above
there were. on the average, eight observations per tree available for use in esu-
maton. Attempts (o estimate the four parameters in Model (8] were not alwavs
successful owing 1o the frequent nonconvergence of the estimates of the asympiote
parameter when using a nonlinear regression routine. This frequently happens
because young trees in the sampie provide too hittle information for estimaung
the upper asymptote. Additionally, estimating the four parameters in Model {8]
leaves oo few degrees of freedom for reliable estimation of ¢,2. Thus. an atiempt
was made to lincarize the estimation process 10 ensurc estimability of the param-
eters and increase the degrees of freedom available for estimaung 4;~. This was
accomplished by reducing the number of parameters in the model to be estimated.
Model [8] was rewnitten as

H =45 + by SA(l — e~y 9]

H,— 4.5
or lDl:T] = ln(bm) + b“—]n(l — g7t {10]
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where ¢, and ¢, are constants set before estimating the parameters ,, and b,,. The
values of ¢, and ¢, were set to 0.89 and 0.024, respectively. Krumland and Wensel
{1977) found ¢, 10 be 0.68 for young-growth redwoods of Califormia. In a prelim-
inary study, Model [9] was {it 10 a subset of the data (# = 63 ponderosa pine irees)
and the average compuied ¢, value was 0.89 (S.E. = 0.06) and thus was set at
0.89. This differs from Krumland and Wensel’s results in part due 1o species
differences, but also because of significant differences in estimation techniques.
In another study, Model [7] was fit to each species in the data base on an individual
tree basis. The average , coefficient {¢, in Model [10]) varied from 0.028 for
Douglas-fir to 0.020 for ponderosa pine. The average across all species was 0.024,
Hence, ¢, was set to 0.024. The parameters ¢, and ¢, were set to prescribed values
to ensure estimability of the parameters by linearization of Model [9] to the form
of Model (10] and to allow sufficient degrees of freedom for reliable estimation
on an individual tree basis of the residual variation. The performance of Model
[10] (see Table 4} will be discussed in the next section.

MODEL FITTING

Determining Site Index for Individual Trees (S,). —One of two methods was em-
ployed to determine individual tree height at breast height age 50 (denoted S)).
If the tree was older than 50 years at breast height. Lagrange polynomiais were
used 10 assess height at age 30 (see e.g., Burden and others 1979). For trees between
40 and 50 years in age at breast height, a vanation of Model [9] was empioved
since site index 15 unknown for these trees and thus is not available as an inde-
pendent variable. The model used was

H;=4.5 + by (1 — e-o)tv (11

where H, = height of the £ tree at age 1. &, and b,, are regression coefficients for
the 7 tree, and ¢, is a constant ¢qual to 0.024 (see Model [10]). This model can
be transformed to allow linear estimation of the parameters as

In{H, — 4.5]1 = In(h,) + &, In(l — e, (12}

Site ndex 1s then estimated by substituting 1 = 50 into equation {1 1] and solving
for H,.

Estimating b,, and b,,.— A linear regression routine was used to estimate In(b,,)
and &, /=1, ..., Ny of Model [10]. The 2 x 2 variance-covariance matrix of
the parameters was calculated as Var(§) = #(X"X)~'. An example is presented in
Table 2.

Inverting the Variance-Covariance Matrix. —Recall that
A
3= D, WG, where W, is defined by equation [5)
=1

with &2 replacing ¢ and & replacing 2. This change of notation emphasizes that
the parameters are unknown and need to be esumated from the sample data.

Let Q, = & -+ &2/(X/X)
= ¢ + estimated variance-covariance of the estimated parameters of
the /™ ¢cross-sectional unit (iree).
Then

W= 2
2 Q!
kel

¢
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TARBLE 2. Parameter estimaies for Model [10] for selected trees.

Var
Qluster-plot- ()
tree-species In(&g) by by &,

2.147-PF 0.875 i.940 0.002502 0.004087 By
004087 010129 b,

2.3-25-WF 1.268 2.473 000274 000665 &
000665 001669 B,

3-1-303-WF 1.0035 1.386 000221 000260 By
000260 000385 b

(Q,1s a 2 by 2 matrix and we only need its inverse (o form W, The algorithm for
calculating a 2 by 2 inverse is well known.

RESULTS

To examine whether there was significant varation 1n the parameters for indi-
vidual trees and, thus, whether a varying parameter model approach is required.
the hypothesis of equality of coefficients between trees was tested. The 1est statistic
tor homogeneity of coefficients (A} i1s given as (Swamy 1970)

S (b~ BY X/ X(b, — B
PR Lt 2. AU

y
=] d,

where b, are coefficients estimated by ordinary least squares (OLS) for an indi-
vidual tree and 3 is the generalized least squares estimator (GLS} given in [3].
{Refer 10 footnote 4 concerning formulation of this stausuc in higher dimensions.)
The asympiotic distribution of the A,/P(N — 1) statistic can be approximated by
an F distnbution having P(N — 1) and M(T — P) degrees of freedom. For this
companson a 7 value of 8 was used. The computed value of H,/P(N — 1) was
t52.7. This value is considerably above the 5 percent value of £ with 372 and
[.122 degrees of freedom. Therefore, we cannot conclude that the coefficients are
homogeneous across trees and thus, a varving parameter model approach is war-
ranted.

The results of the GLS parameter esumation based on individual trees and the
QLS parameters esttmated from the pooled data are gaven in Table 3. To compare
the results of the two estirnation lechniques, the hypothesis of equality of coef-
ficients between methods was tested (see Swamy 1970 for the test stausuc). This
hypothesis was rejected at « = 0.05. Thus it is evident that there are substantive
differences in the values of the coefficients between the 1wo esumation technigues.
Figure 3 shows the differences in site curves (with ail species combined) due to

TABLE 3. GLS and OLS estimates of the beias.

liem All species combined Estimauon procedure
In(8,) 1.055 GLS

8 1.732

In(30) 0.954 oLs

8, 1.457

N 187
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Figure 3. Site index curves estimated by GLS and OLS techmiques.

the two estimatuion techniques.® That is. the GLS estimate for the asympiote (&)
was higher than its QLS counterpart. producing higher ievels of growth past age
30. In addition. the rate and shape parameier (#,} esumated by GLS was larger
than when esumated by OLS. The net effect of these wrends 15 10 increase the
slope of the curves. These differences would have an effect on growth and yieid
estimnation, particulariv on sites of at least 8C feet at breast height age 50. in that
the GLS-esumated curves show significantly higher potential height growth bevond
age 30 than do their OLS counterparts. In a simulaton or inventory update. the
height growth of trees expenencing little or moderate competution would likely
be underesumated by the traditional OLS curves with resulting underestimates
of volume preductivity. This is because growih and vield simulators frequently
utilize site curves in ¢stimating height growth potential and induce reductions
based upon the ievel of compeution effecting individual trees (e.g., Damels and
others 1979, Monserud 1975, Krumland 1982. Mitchell 1975). In a related study,
Ferguson and Leech (1978) compared OLS and GLS estimates of parameters of

’ For the figures presented. the curves have been adjusted 1o go through site index at age 30. This

adjusiment was accompiished by setting ¢ = 30 and # = § and solving for the parameter ,. However.
the basic relationships are unchanged by this adjustment.
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TABLE 4. Sum of squared differences between predicted and actual heights
summed over 187 individual site trees using the GLS and OLS parameter esii-
mates of the untransformed Model [9] and the GLS estimates of Model [7] esui-
mated with nonlinear regression technigues (INLIN).

Model (9],

: Model (7],
hnear parameler noniinear paramerer
estimates, ail .
; . estirnates, all
species combined .
species cambined.
Iem GLS OLS GLS
Total residual
sum of squares 106,538 131,453 120,259

a yield function. Although not discussed, their model predictions for cubic meter
yields using the GLS estimates of the parameters were also higher (3—6 percent)
than their QLS counterparts over a wide range of sites and ages.

It is not surprising that these approaches lead 1o different parameter estimaies
owing to the fundamental difference in parameter estimation techniques. For these
1two appreaches 1o lead to equivalent results. the random elements (4,) must be
equivalent across individuais. That 18, the growth form of the individual trees
must be equivalent. Sullivan and Revnolds (1976) have discussed the properiies
of the OLS estimators while using time series data. The OLS estimates of the
parameters are unbiased even in the presence of correlated data. However. the
QLS parameters are unbiased in estimating the regression line that predicts the
conditional mean height of the sample given specific values of the explanatory
vanables. This regression line is not equal to the height growth curve of the average
tree if the random elements vary by individual. Hence, the traditional OLS regres-
sion estimates of cross-sectional data lead 1o esumation of a different regression
line. Thus a more accurate estimate of the mean height growih curve shouid be
obtained with the GLS procedure presented in which a varving-parameter model
15 fitted to each individual tree in the data set.

To assess the performance of the GLS estimates of the parameters, Model (9]
was used to predict height over age of all 187 individual site trees.® The sum of
squared differences of predicted versus actual heights was calculated for each tree
in the data base and summed using the GLS and OLS estimates of the coefficients.
The resuits are presented 1n Table 4.7 The sum of squared differences of predicied
versus actual heights was considerably lower when using the GLS estimaies of
the parameters of Model [9] than when using the OLS estimates. [t is also ner-
esting 1o note that using Model [10] (or equivalently Model [9]), which was a
hneanization of the sigmoidal model. was superior in residual variation when
judged against the GLS estimates of a nonlinear equation (Model [7)). Thus. there
appears to have been no resultant loss in predictive power incurred by setting
paramelters to specific values 1o allow linearization of the sigmoid model.®

® The residual sum of squares using the OLS estimates of the parameters would be less ihan when
using the GLS estimates for Maodel [10]. However, 1n the untransformed meunc this relanonship may
not hold.

' For the tabled values presented, the curves have been consirained to go through siie index at age
50 (see footnote 5).

# The vaiues presented in Table 4 for Model [7) are not directly comparable 10 those of Model {9}
swing 1o the ffequent nonconvergence of the asymptote for voung trees when estimating parameters
of Model [7]. Thus, fewer trees were uitlized in estimating the coefficients of Model [7] than of Modet
(9]
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CONCLUSIONS

Two methods of estimating the parameters of site index curves were investigated.,
Commonly, pooled stem analysis data are used to develop a regression equation
describing height as a function of age and site {or age). The OLS estimates of the
parameters, so computed, may provide different estimaies of the height growth
development of the average tree than if a varving-parameter mode! is employed.
Thus, an alternative approach was presented that utilizes the full information
inherent in stem analysis data for individual trees. The procedure used a varying-
parameter (random regression coefficient} model derived from weighted least-
squares fitting of height growth models to the observations of individual trees
over lume. ’

An example was presented for primarily dominant irees in the mixed conifer
forest of California. For the sigmoid model 1ested. the varying-parameter model
predicted higher asymptotic growth than its OLS counterpart estimated using
poocled data. The corresponding measures of model fit for the untransformed
Model [9] (residual sum of squared differences between predicted and actual on
individual trees) showed that the GLS technique fitted the stem analysis data well.
This approach should prove useful in modelling many growth processes provided
the growth series is of sufficient length to accurately estimate the parameters of
the hvpothesized model as well as esumate residual varnance on an individual
lTee Dasis.
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